These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
225 related items for PubMed ID: 1457450
21. [Comparative pharmacokinetics of oral cephalosporins: cephalexin, cefaclor and cefadroxil (author's transl)]. Lode H, Stahlmann R, Dzwillo G, Koeppe P. Arzneimittelforschung; 1980; 30(3):505-9. PubMed ID: 7387765 [Abstract] [Full Text] [Related]
22. Transport mechanism of cephalexin in isolated hepatocytes. Tamai I, Tsuji A. J Pharmacobiodyn; 1987 Nov; 10(11):632-8. PubMed ID: 3446770 [Abstract] [Full Text] [Related]
23. Characterization of the transport system for beta-lactam antibiotics and dipeptides in rat renal brush-border membrane vesicles by photoaffinity labeling. Kramer W, Leipe I, Petzoldt E, Girbig F. Biochim Biophys Acta; 1988 Mar 22; 939(1):167-72. PubMed ID: 3349078 [Abstract] [Full Text] [Related]
24. Transcellular transport of oral cephalosporins in human intestinal epithelial cells, Caco-2: interaction with dipeptide transport systems in apical and basolateral membranes. Matsumoto S, Saito H, Inui K. J Pharmacol Exp Ther; 1994 Aug 22; 270(2):498-504. PubMed ID: 8071843 [Abstract] [Full Text] [Related]
25. Transepithelial transport of oral cephalosporins by monolayers of intestinal epithelial cell line Caco-2: specific transport systems in apical and basolateral membranes. Inui K, Yamamoto M, Saito H. J Pharmacol Exp Ther; 1992 Apr 22; 261(1):195-201. PubMed ID: 1560365 [Abstract] [Full Text] [Related]
26. Transport of a large neutral amino acid in a human intestinal epithelial cell line (Caco-2): uptake and efflux of phenylalanine. Hu M, Borchardt RT. Biochim Biophys Acta; 1992 Jun 29; 1135(3):233-44. PubMed ID: 1623010 [Abstract] [Full Text] [Related]
27. Intestinal uptake of dipeptides and beta-lactam antibiotics. I. The intestinal uptake system for dipeptides and beta-lactam antibiotics is not part of a brush border membrane peptidase. Kramer W, Dechent C, Girbig F, Gutjahr U, Neubauer H. Biochim Biophys Acta; 1990 Nov 30; 1030(1):41-9. PubMed ID: 1979919 [Abstract] [Full Text] [Related]
28. Metabolism, uptake, and transepithelial transport of the diastereomers of Val-Val in the human intestinal cell line, Caco-2. Tamura K, Bhatnagar PK, Takata JS, Lee CP, Smith PL, Borchardt RT. Pharm Res; 1996 Aug 30; 13(8):1213-8. PubMed ID: 8865315 [Abstract] [Full Text] [Related]
29. Metabolism, uptake, and transepithelial transport of the stereoisomers of Val-Val-Val in the human intestinal cell line, Caco-2. Tamura K, Lee CP, Smith PL, Borchardt RT. Pharm Res; 1996 Nov 30; 13(11):1663-7. PubMed ID: 8956331 [Abstract] [Full Text] [Related]
30. Interactions of the dipeptide ester prodrugs of acyclovir with the intestinal oligopeptide transporter: competitive inhibition of glycylsarcosine transport in human intestinal cell line-Caco-2. Anand BS, Patel J, Mitra AK. J Pharmacol Exp Ther; 2003 Feb 30; 304(2):781-91. PubMed ID: 12538834 [Abstract] [Full Text] [Related]
31. Influence of amino acid side-chain modification on the uptake system for beta-lactam antibiotics and dipeptides from rabbit small intestine. Kramer W, Dürckheimer W, Girbig F, Gutjahr U, Leipe I, Oekonomopulos R. Biochim Biophys Acta; 1990 Oct 05; 1028(2):174-82. PubMed ID: 2223791 [Abstract] [Full Text] [Related]
32. The pharmacokinetics of the oral cephalosporins cefaclor, cephradine and cephalexin. Welling PG, Dean S, Selen A, Kendall MJ, Wise R. Int J Clin Pharmacol Biopharm; 1979 Sep 05; 17(9):397-400. PubMed ID: 500261 [Abstract] [Full Text] [Related]
33. Mechanism of riboflavine uptake by Caco-2 human intestinal epithelial cells. Said HM, Ma TY. Am J Physiol; 1994 Jan 05; 266(1 Pt 1):G15-21. PubMed ID: 8304455 [Abstract] [Full Text] [Related]
34. Evidence for predominantly paracellular transport of thyrotropin-releasing hormone across CACO-2 cell monolayers. Gan LS, Niederer T, Eads C, Thakker D. Biochem Biophys Res Commun; 1993 Dec 15; 197(2):771-7. PubMed ID: 8267614 [Abstract] [Full Text] [Related]
35. Transport characteristics of ceftibuten, a new cephaloporin antibiotic, via the apical H+/dipeptide cotransport system in human intestinal cell line Caco-2: regulation by cell growth. Matsumoto S, Saito H, Inui K. Pharm Res; 1995 Oct 15; 12(10):1483-7. PubMed ID: 8584486 [Abstract] [Full Text] [Related]
36. Interaction of the orally active dianionic cephalosporin cefixime with the uptake system for oligopeptides and alpha-amino-beta-lactam antibiotics in rabbit small intestine. Kramer W, Gutjahr U, Kowalewski S, Girbig F. Biochem Pharmacol; 1993 Aug 03; 46(3):542-6. PubMed ID: 8347176 [Abstract] [Full Text] [Related]
37. Binding of amino beta-lactam antibiotics to soluble protein from rat intestinal mucosa--II. Mutual inhibition of binding among amino beta-lactam antibiotics and binding characteristics. Iseki K, Mori K, Miyazaki K, Arita T. Biochem Pharmacol; 1987 Jun 01; 36(11):1843-6. PubMed ID: 3579977 [Abstract] [Full Text] [Related]
38. Transport of oral cephalosporins by the H+/dipeptide cotransporter and distribution of the transport activity in isolated rabbit intestinal epithelial cells. Tomita Y, Takano M, Yasuhara M, Hori R, Inui K. J Pharmacol Exp Ther; 1995 Jan 01; 272(1):63-9. PubMed ID: 7815365 [Abstract] [Full Text] [Related]
39. D-cycloserine uses an active transport mechanism in the human intestinal cell line Caco 2. Ranaldi G, Islam K, Sambuy Y. Antimicrob Agents Chemother; 1994 Jun 01; 38(6):1239-45. PubMed ID: 8092820 [Abstract] [Full Text] [Related]
40. H(+)-coupled uphill transport of the dipeptide glycylsarcosine by bovine intestinal brush-border membrane vesicles. Wolffram S, Grenacher B, Scharrer E. J Dairy Sci; 1998 Oct 01; 81(10):2595-603. PubMed ID: 9812265 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]