These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
454 related items for PubMed ID: 14578484
1. Ganglion cell contributions to the rat full-field electroretinogram. Bui BV, Fortune B. J Physiol; 2004 Feb 15; 555(Pt 1):153-73. PubMed ID: 14578484 [Abstract] [Full Text] [Related]
2. Contribution of voltage-gated sodium channels to the b-wave of the mammalian flash electroretinogram. Mojumder DK, Sherry DM, Frishman LJ. J Physiol; 2008 May 15; 586(10):2551-80. PubMed ID: 18388140 [Abstract] [Full Text] [Related]
4. Contribution of retinal ganglion cells to the mouse electroretinogram. Smith BJ, Wang X, Chauhan BC, Côté PD, Tremblay F. Doc Ophthalmol; 2014 Jun 15; 128(3):155-68. PubMed ID: 24659322 [Abstract] [Full Text] [Related]
5. The gradient of retinal functional changes during acute intraocular pressure elevation. Bui BV, Edmunds B, Cioffi GA, Fortune B. Invest Ophthalmol Vis Sci; 2005 Jan 15; 46(1):202-13. PubMed ID: 15623775 [Abstract] [Full Text] [Related]
9. Voltage-gated sodium channels contribute to the b-wave of the rodent electroretinogram by mediating input to rod bipolar cell GABA(c) receptors. Smith BJ, Tremblay F, Côté PD. Exp Eye Res; 2013 Nov 15; 116():279-90. PubMed ID: 24060343 [Abstract] [Full Text] [Related]
10. Selective ganglion cell functional loss in rats with experimental glaucoma. Fortune B, Bui BV, Morrison JC, Johnson EC, Dong J, Cepurna WO, Jia L, Barber S, Cioffi GA. Invest Ophthalmol Vis Sci; 2004 Jun 15; 45(6):1854-62. PubMed ID: 15161850 [Abstract] [Full Text] [Related]
11. Regional variations in local contributions to the primate photopic flash ERG: revealed using the slow-sequence mfERG. Rangaswamy NV, Hood DC, Frishman LJ. Invest Ophthalmol Vis Sci; 2003 Jul 15; 44(7):3233-47. PubMed ID: 12824276 [Abstract] [Full Text] [Related]
12. Photopic ERGs in patients with optic neuropathies: comparison with primate ERGs after pharmacologic blockade of inner retina. Rangaswamy NV, Frishman LJ, Dorotheo EU, Schiffman JS, Bahrani HM, Tang RA. Invest Ophthalmol Vis Sci; 2004 Oct 15; 45(10):3827-37. PubMed ID: 15452095 [Abstract] [Full Text] [Related]
13. Origin of electroretinogram amplitude growth during light adaptation in pigmented rats. Bui BV, Fortune B. Vis Neurosci; 2006 Oct 15; 23(2):155-67. PubMed ID: 16638169 [Abstract] [Full Text] [Related]
14. Local ganglion cell contributions to the macaque electroretinogram revealed by experimental nerve fiber layer bundle defect. Fortune B, Wang L, Bui BV, Cull G, Dong J, Cioffi GA. Invest Ophthalmol Vis Sci; 2003 Oct 15; 44(10):4567-79. PubMed ID: 14507906 [Abstract] [Full Text] [Related]
15. Retinal origins of the primate multifocal ERG: implications for the human response. Hood DC, Frishman LJ, Saszik S, Viswanathan S. Invest Ophthalmol Vis Sci; 2002 May 15; 43(5):1673-85. PubMed ID: 11980890 [Abstract] [Full Text] [Related]
16. Photopic ERG negative response from amacrine cell signaling in RCS rat retinal degeneration. Machida S, Raz-Prag D, Fariss RN, Sieving PA, Bush RA. Invest Ophthalmol Vis Sci; 2008 Jan 15; 49(1):442-52. PubMed ID: 18172124 [Abstract] [Full Text] [Related]
17. Monitoring retinal morphologic and functional changes in mice following optic nerve crush. Liu Y, McDowell CM, Zhang Z, Tebow HE, Wordinger RJ, Clark AF. Invest Ophthalmol Vis Sci; 2014 May 22; 55(6):3766-74. PubMed ID: 24854856 [Abstract] [Full Text] [Related]
19. Retinal A2A and A3 adenosine receptors modulate the components of the rat electroretinogram. Jonsson G, Eysteinsson T. Vis Neurosci; 2017 Jan 22; 34():E001. PubMed ID: 28304243 [Abstract] [Full Text] [Related]
20. Evaluation of different recording parameters to establish a standard for flash electroretinography in rodents. Bayer AU, Cook P, Brodie SE, Maag KP, Mittag T. Vision Res; 2001 Aug 22; 41(17):2173-85. PubMed ID: 11448710 [Abstract] [Full Text] [Related] Page: [Next] [New Search]