These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


128 related items for PubMed ID: 14585694

  • 1. Gravity spinning of polycaprolactone fibres for applications in tissue engineering.
    Williamson MR, Coombes AG.
    Biomaterials; 2004 Feb; 25(3):459-65. PubMed ID: 14585694
    [Abstract] [Full Text] [Related]

  • 2. Gravity spun polycaprolactone fibres for soft tissue engineering: interaction with fibroblasts and myoblasts in cell culture.
    Williamson MR, Adams EF, Coombes AG.
    Biomaterials; 2006 Mar; 27(7):1019-26. PubMed ID: 16054685
    [Abstract] [Full Text] [Related]

  • 3. Gravity spun polycaprolactone fibers for applications in vascular tissue engineering: proliferation and function of human vascular endothelial cells.
    Williamson MR, Woollard KJ, Griffiths HR, Coombes AG.
    Tissue Eng; 2006 Jan; 12(1):45-51. PubMed ID: 16499441
    [Abstract] [Full Text] [Related]

  • 4. Gravity spun polycaprolactone fibres: controlling release of a hydrophilic macromolecule (ovalbumin) and a lipophilic drug (progesterone).
    Williamson MR, Chang HI, Coombes AG.
    Biomaterials; 2004 Sep; 25(20):5053-60. PubMed ID: 15109868
    [Abstract] [Full Text] [Related]

  • 5. Additive manufacturing of wet-spun polymeric scaffolds for bone tissue engineering.
    Puppi D, Mota C, Gazzarri M, Dinucci D, Gloria A, Myrzabekova M, Ambrosio L, Chiellini F.
    Biomed Microdevices; 2012 Dec; 14(6):1115-27. PubMed ID: 22767245
    [Abstract] [Full Text] [Related]

  • 6. Polycaprolactone fibres as a potential delivery system for collagen to support bone regeneration.
    McNeil SE, Griffiths HR, Perrie Y.
    Curr Drug Deliv; 2011 Jul; 8(4):448-55. PubMed ID: 21235468
    [Abstract] [Full Text] [Related]

  • 7. Characterization of chitosan-polycaprolactone blends for tissue engineering applications.
    Sarasam A, Madihally SV.
    Biomaterials; 2005 Sep; 26(27):5500-8. PubMed ID: 15860206
    [Abstract] [Full Text] [Related]

  • 8. Patterned melt electrospun substrates for tissue engineering.
    Dalton PD, Joergensen NT, Groll J, Moeller M.
    Biomed Mater; 2008 Sep; 3(3):034109. PubMed ID: 18689917
    [Abstract] [Full Text] [Related]

  • 9. Control on molecular weight reduction of poly(ε-caprolactone) during melt spinning--a way to produce high strength biodegradable fibers.
    Pal J, Kankariya N, Sanwaria S, Nandan B, Srivastava RK.
    Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):4213-20. PubMed ID: 23910335
    [Abstract] [Full Text] [Related]

  • 10. The effect of electrospun polycaprolactone scaffold morphology on human kidney epithelial cells.
    Burton TP, Corcoran A, Callanan A.
    Biomed Mater; 2017 Nov 22; 13(1):015006. PubMed ID: 29165317
    [Abstract] [Full Text] [Related]

  • 11. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/poly(epsilon-caprolactone) blends for tissue engineering applications in the form of hollow fibers.
    Chiono V, Ciardelli G, Vozzi G, Sotgiu MG, Vinci B, Domenici C, Giusti P.
    J Biomed Mater Res A; 2008 Jun 15; 85(4):938-53. PubMed ID: 17896770
    [Abstract] [Full Text] [Related]

  • 12. Development of nanofibrous scaffolds containing gum tragacanth/poly (ε-caprolactone) for application as skin scaffolds.
    Ranjbar-Mohammadi M, Bahrami SH.
    Mater Sci Eng C Mater Biol Appl; 2015 Mar 15; 48():71-9. PubMed ID: 25579898
    [Abstract] [Full Text] [Related]

  • 13. Controlled release of an antibiotic, gentamicin sulphate, from gravity spun polycaprolactone fibers.
    Chang HI, Lau YC, Yan C, Coombes AG.
    J Biomed Mater Res A; 2008 Jan 15; 84(1):230-7. PubMed ID: 17607742
    [Abstract] [Full Text] [Related]

  • 14. Mechanical properties of bioactive glass 9-93 fibres.
    Pirhonen E, Moimas L, Brink M.
    Acta Biomater; 2006 Jan 15; 2(1):103-7. PubMed ID: 16701864
    [Abstract] [Full Text] [Related]

  • 15. New generation poly(ε-caprolactone)/gel-derived bioactive glass composites for bone tissue engineering: Part I. Material properties.
    Dziadek M, Menaszek E, Zagrajczuk B, Pawlik J, Cholewa-Kowalska K.
    Mater Sci Eng C Mater Biol Appl; 2015 Nov 01; 56():9-21. PubMed ID: 26249560
    [Abstract] [Full Text] [Related]

  • 16. Characterisation of CorGlaes(®) Pure 107 fibres for biomedical applications.
    Colquhoun R, Gadegaard N, Healy DM, Tanner KE.
    J Mater Sci Mater Med; 2016 Oct 01; 27(10):149. PubMed ID: 27582069
    [Abstract] [Full Text] [Related]

  • 17. Characterization and in vitro evaluation of electrospun chitosan/polycaprolactone blend fibrous mat for skin tissue engineering.
    Prasad T, Shabeena EA, Vinod D, Kumary TV, Anil Kumar PR.
    J Mater Sci Mater Med; 2015 Jan 01; 26(1):5352. PubMed ID: 25578706
    [Abstract] [Full Text] [Related]

  • 18. Surface properties and biocompatibility of solvent-cast poly[-caprolactone] films.
    Tang ZG, Black RA, Curran JM, Hunt JA, Rhodes NP, Williams DF.
    Biomaterials; 2004 Aug 01; 25(19):4741-8. PubMed ID: 15120520
    [Abstract] [Full Text] [Related]

  • 19. Electrospinning and evaluation of PHBV-based tissue engineering scaffolds with different fibre diameters, surface topography and compositions.
    Tong HW, Wang M, Lu WW.
    J Biomater Sci Polym Ed; 2012 Aug 01; 23(6):779-806. PubMed ID: 21418747
    [Abstract] [Full Text] [Related]

  • 20. A comparison of the effects of fibre alignment of smooth and textured fibres in electrospun membranes on fibroblast cell adhesion.
    Truong YB, Glattauer V, Lang G, Hands K, Kyratzis IL, Werkmeister JA, Ramshaw JA.
    Biomed Mater; 2010 Apr 01; 5(2):25005. PubMed ID: 20308775
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.