These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


214 related items for PubMed ID: 14586008

  • 1. Input organization of multifunctional motion-sensitive neurons in the blowfly.
    Farrow K, Haag J, Borst A.
    J Neurosci; 2003 Oct 29; 23(30):9805-11. PubMed ID: 14586008
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Neural circuit tuning fly visual neurons to motion of small objects. II. Input organization of inhibitory circuit elements revealed by electrophysiological and optical recording techniques.
    Egelhaaf M, Borst A, Warzecha AK, Flecks S, Wildemann A.
    J Neurophysiol; 1993 Feb 29; 69(2):340-51. PubMed ID: 8459271
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. In vivo calcium accumulation in presynaptic and postsynaptic dendrites of visual interneurons.
    Dürr V, Egelhaaf M.
    J Neurophysiol; 1999 Dec 29; 82(6):3327-38. PubMed ID: 10601464
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Neural computation of motion in the fly visual system: quadratic nonlinearity of responses induced by picrotoxin in the HS and CH cells.
    Kondoh Y, Hasegawa Y, Okuma J, Takahashi F.
    J Neurophysiol; 1995 Dec 29; 74(6):2665-84. PubMed ID: 8747223
    [Abstract] [Full Text] [Related]

  • 12. Two classes of visual motion sensitive interneurons differ in direction and velocity dependency of in vivo calcium dynamics.
    Dürr V, Kurtz R, Egelhaaf M.
    J Neurobiol; 2001 Mar 29; 46(4):289-300. PubMed ID: 11180156
    [Abstract] [Full Text] [Related]

  • 13. Unraveling the functional organization of lobula complex in the mantis brain by identification of visual interneurons.
    Yamawaki Y.
    J Comp Neurol; 2019 May 01; 527(7):1161-1178. PubMed ID: 30552687
    [Abstract] [Full Text] [Related]

  • 14. Integration of lobula plate output signals by DNOVS1, an identified premotor descending neuron.
    Haag J, Wertz A, Borst A.
    J Neurosci; 2007 Feb 21; 27(8):1992-2000. PubMed ID: 17314295
    [Abstract] [Full Text] [Related]

  • 15. Dendritic structure and receptive-field organization of optic flow processing interneurons in the fly.
    Krapp HG, Hengstenberg B, Hengstenberg R.
    J Neurophysiol; 1998 Apr 21; 79(4):1902-17. PubMed ID: 9535957
    [Abstract] [Full Text] [Related]

  • 16. Retinotopic pathways providing motion-selective information to the lobula from peripheral elementary motion-detecting circuits.
    Douglass JK, Strausfeld NJ.
    J Comp Neurol; 2003 Mar 17; 457(4):326-44. PubMed ID: 12561074
    [Abstract] [Full Text] [Related]

  • 17. Visual system of calliphorid flies: motion- and orientation-sensitive visual interneurons supplying dorsal optic glomeruli.
    Okamura JY, Strausfeld NJ.
    J Comp Neurol; 2007 Jan 01; 500(1):189-208. PubMed ID: 17099892
    [Abstract] [Full Text] [Related]

  • 18. Response properties of motion-sensitive visual interneurons in the lobula plate of Drosophila melanogaster.
    Joesch M, Plett J, Borst A, Reiff DF.
    Curr Biol; 2008 Mar 11; 18(5):368-74. PubMed ID: 18328703
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.