These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
226 related items for PubMed ID: 14597853
1. Effects of angiotensin II on nitric oxide generation in growing and resting rat aortic endothelial cells. Bayraktutan U. J Hypertens; 2003 Nov; 21(11):2093-101. PubMed ID: 14597853 [Abstract] [Full Text] [Related]
2. Effects of angiotensin II on nitric oxide generation in proliferating and quiescent rat coronary microvascular endothelial cells. Bayraktutan U, Ulker S. Hypertens Res; 2003 Sep; 26(9):749-57. PubMed ID: 14620932 [Abstract] [Full Text] [Related]
3. Enhanced AT1 receptor-mediated vasocontractile response to ANG II in endothelium-denuded aorta of obese Zucker rats. Siddiqui AH, Hussain T. Am J Physiol Heart Circ Physiol; 2007 Apr; 292(4):H1722-7. PubMed ID: 17142345 [Abstract] [Full Text] [Related]
4. Effects of angiotensin II infusion and inhibition of nitric oxide synthase on the rat aorta. Kato H, Hou J, Chobanian AV, Brecher P. Hypertension; 1996 Aug; 28(2):153-8. PubMed ID: 8707375 [Abstract] [Full Text] [Related]
5. Neuronal nitric oxide synthase is expressed in rat vascular smooth muscle cells: activation by angiotensin II in hypertension. Boulanger CM, Heymes C, Benessiano J, Geske RS, Lévy BI, Vanhoutte PM. Circ Res; 1996 Aug; 83(12):1271-8. PubMed ID: 9851944 [Abstract] [Full Text] [Related]
6. Angiotensin II/AT2 receptor-induced vasodilation in stroke-prone spontaneously hypertensive rats involves nitric oxide and cGMP-dependent protein kinase. Savoia C, Ebrahimian T, He Y, Gratton JP, Schiffrin EL, Touyz RM. J Hypertens; 2006 Dec; 24(12):2417-22. PubMed ID: 17082724 [Abstract] [Full Text] [Related]
7. Angiotensin II stimulates the production of NO and peroxynitrite in endothelial cells. Pueyo ME, Arnal JF, Rami J, Michel JB. Am J Physiol; 1998 Jan; 274(1):C214-20. PubMed ID: 9458730 [Abstract] [Full Text] [Related]
8. Constitutive nitric oxide production in bovine aortic and brain microvascular endothelial cells: a comparative study. Kimura C, Oike M, Ohnaka K, Nose Y, Ito Y. J Physiol; 2004 Feb 01; 554(Pt 3):721-30. PubMed ID: 14617679 [Abstract] [Full Text] [Related]
9. [Effect of soft tissue crush injury on tensions of thoracic aortic rings in rats]. Wang HY, Yan J, Xiang J, Zhao LX, Gu ZY. Fa Yi Xue Za Zhi; 2011 Apr 01; 27(2):81-6, 90. PubMed ID: 21604442 [Abstract] [Full Text] [Related]
10. A HMG-CoA reductase inhibitor possesses a potent anti-atherosclerotic effect other than serum lipid lowering effects--the relevance of endothelial nitric oxide synthase and superoxide anion scavenging action. Sumi D, Hayashi T, Thakur NK, Jayachandran M, Asai Y, Kano H, Matsui H, Iguchi A. Atherosclerosis; 2001 Apr 01; 155(2):347-57. PubMed ID: 11254905 [Abstract] [Full Text] [Related]
11. Involvement of Ca2+/calmodulin-dependent protein kinase II in endothelial NO production and endothelium-dependent relaxation. Schneider JC, El Kebir D, Chéreau C, Lanone S, Huang XL, De Buys Roessingh AS, Mercier JC, Dall'Ava-Santucci J, Dinh-Xuan AT. Am J Physiol Heart Circ Physiol; 2003 Jun 01; 284(6):H2311-9. PubMed ID: 12560211 [Abstract] [Full Text] [Related]
12. Endothelial dysfunction and xanthine oxidoreductase activity in rats with human renin and angiotensinogen genes. Mervaala EM, Cheng ZJ, Tikkanen I, Lapatto R, Nurminen K, Vapaatalo H, Müller DN, Fiebeler A, Ganten U, Ganten D, Luft FC. Hypertension; 2001 Feb 01; 37(2 Pt 2):414-8. PubMed ID: 11230310 [Abstract] [Full Text] [Related]
13. Evidence for a contribution of store-operated Ca2+ channels to NO-mediated endothelium-dependent relaxation of guinea-pig aorta in response to a Ca2+ ionophore, A23187. Taniguchi H, Tanaka Y, Hirano H, Tanaka H, Shigenobu K. Naunyn Schmiedebergs Arch Pharmacol; 1999 Jul 01; 360(1):69-79. PubMed ID: 10463336 [Abstract] [Full Text] [Related]
14. Elevated pressure causes endothelial dysfunction in mouse carotid arteries by increasing local angiotensin signaling. Zhao Y, Flavahan S, Leung SW, Xu A, Vanhoutte PM, Flavahan NA. Am J Physiol Heart Circ Physiol; 2015 Feb 15; 308(4):H358-63. PubMed ID: 25485905 [Abstract] [Full Text] [Related]
15. Upregulation of ERK1/2-eNOS via AT2 receptors decreases the contractile response to angiotensin II in resistance mesenteric arteries from obese rats. Hagihara GN, Lobato NS, Filgueira FP, Akamine EH, Aragão DS, Casarini DE, Carvalho MH, Fortes ZB. PLoS One; 2014 Feb 15; 9(8):e106029. PubMed ID: 25170617 [Abstract] [Full Text] [Related]
16. Role of nitric oxide on the vasorelaxant effect of atrial natriuretic peptide on rabbit aorta basal tone. Romano L, Coviello A, Jerez S, Peral de Bruno M. Can J Physiol Pharmacol; 2002 Oct 15; 80(10):1022-9. PubMed ID: 12450070 [Abstract] [Full Text] [Related]
17. Increased vascular angiotensin type 2 receptor expression and NOS-mediated mechanisms of vascular relaxation in pregnant rats. Stennett AK, Qiao X, Falone AE, Koledova VV, Khalil RA. Am J Physiol Heart Circ Physiol; 2009 Mar 15; 296(3):H745-55. PubMed ID: 19151255 [Abstract] [Full Text] [Related]
18. Interactions between nitric oxide and angiotensin II on renal cortical and papillary blood flow. Madrid MI, García-Salom M, Tornel J, de Gasparo M, Fenoy FJ. Hypertension; 1997 Nov 15; 30(5):1175-82. PubMed ID: 9369273 [Abstract] [Full Text] [Related]
19. Divergent roles of angiotensin II AT1 and AT2 receptors in modulating coronary microvascular function. Zhang C, Hein TW, Wang W, Kuo L. Circ Res; 2003 Feb 21; 92(3):322-9. PubMed ID: 12595345 [Abstract] [Full Text] [Related]
20. Angiotensin-(1-7) reduces the perfusion pressure response to angiotensin II and methoxamine via an endothelial nitric oxide-mediated pathway in cirrhotic rat liver. Herath CB, Mak K, Burrell LM, Angus PW. Am J Physiol Gastrointest Liver Physiol; 2013 Jan 01; 304(1):G99-108. PubMed ID: 23086915 [Abstract] [Full Text] [Related] Page: [Next] [New Search]