These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


160 related items for PubMed ID: 1460869

  • 1. Immunohistochemical and in situ hybridization studies of androgen receptor expression in a transplantable androgen-independent prostatic carcinoma line (AIT) of Noble rats.
    Leav I, Kwan PW, Merk FB, Chang C, Ho SM.
    Lab Invest; 1992 Dec; 67(6):788-95. PubMed ID: 1460869
    [Abstract] [Full Text] [Related]

  • 2. Early alterations in ras protooncogene mRNA expression in testosterone and estradiol-17 beta induced prostatic dysplasia of noble rats.
    Yu M, Leav BA, Leav I, Merk FB, Wolfe HJ, Ho SM.
    Lab Invest; 1993 Jan; 68(1):33-44. PubMed ID: 8423674
    [Abstract] [Full Text] [Related]

  • 3. Testosterone-mediated increase in 5 alpha-dihydrotestosterone content, nuclear androgen receptor levels, and cell division in an androgen-independent prostate carcinoma of Noble rats.
    Ho SM, Leav I, Damassa D, Kwan PW, Merk FB, Seto HS.
    Cancer Res; 1988 Feb 01; 48(3):609-14. PubMed ID: 3257169
    [Abstract] [Full Text] [Related]

  • 4. Role of canine basal cells in prostatic post natal development, induction of hyperplasia, sex hormone-stimulated growth; and the ductal origin of carcinoma.
    Leav I, Schelling KH, Adams JY, Merk FB, Alroy J.
    Prostate; 2001 May 15; 47(3):149-63. PubMed ID: 11351344
    [Abstract] [Full Text] [Related]

  • 5. Role of canine basal cells in postnatal prostatic development, induction of hyperplasia, and sex hormone-stimulated growth; and the ductal origin of carcinoma.
    Leav I, Schelling KH, Adams JY, Merk FB, Alroy J.
    Prostate; 2001 Aug 01; 48(3):210-24. PubMed ID: 11494337
    [Abstract] [Full Text] [Related]

  • 6. C19-radiosteroid disposition in organ cultures of transplanted prostatic adenocarcinomas of the Noble rat.
    Ofner P, Leav I, Boucher WS, Vena RL.
    Cancer Res; 1987 Mar 15; 47(6):1701-5. PubMed ID: 3815367
    [Abstract] [Full Text] [Related]

  • 7. Transcriptional regulation of the androgen signaling pathway by the Wilms' tumor suppressor gene WT1.
    Zaia A, Fraizer GC, Piantanelli L, Saunders GF.
    Anticancer Res; 2001 Mar 15; 21(1A):1-10. PubMed ID: 11299720
    [Abstract] [Full Text] [Related]

  • 8. Ligand-independent activation of the androgen receptor by the differentiation agent butyrate in human prostate cancer cells.
    Sadar MD, Gleave ME.
    Cancer Res; 2000 Oct 15; 60(20):5825-31. PubMed ID: 11059779
    [Abstract] [Full Text] [Related]

  • 9. Characterization of a novel androgen receptor mutation in a relapsed CWR22 prostate cancer xenograft and cell line.
    Tepper CG, Boucher DL, Ryan PE, Ma AH, Xia L, Lee LF, Pretlow TG, Kung HJ.
    Cancer Res; 2002 Nov 15; 62(22):6606-14. PubMed ID: 12438256
    [Abstract] [Full Text] [Related]

  • 10. DNA methylation in the androgen receptor gene promoter region in rat prostate cancers.
    Takahashi S, Inaguma S, Sakakibara M, Cho YM, Suzuki S, Ikeda Y, Cui L, Shirai T.
    Prostate; 2002 Jun 01; 52(1):82-8. PubMed ID: 11992622
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Hormonal regulation of beta2-adrenergic receptor level in prostate cancer.
    Ramberg H, Eide T, Krobert KA, Levy FO, Dizeyi N, Bjartell AS, Abrahamsson PA, Taskén KA.
    Prostate; 2008 Jul 01; 68(10):1133-42. PubMed ID: 18454446
    [Abstract] [Full Text] [Related]

  • 13. Androgen receptor stabilization in recurrent prostate cancer is associated with hypersensitivity to low androgen.
    Gregory CW, Johnson RT, Mohler JL, French FS, Wilson EM.
    Cancer Res; 2001 Apr 01; 61(7):2892-8. PubMed ID: 11306464
    [Abstract] [Full Text] [Related]

  • 14. Mitogen-activated protein kinase and mitogen-activated kinase phosphatase-1 expression in the Noble rat model of sex hormone-induced prostatic dysplasia and carcinoma.
    Leav I, Galluzzi CM, Ziar J, Stork PJ, Ho SM, Loda M.
    Lab Invest; 1996 Sep 01; 75(3):361-70. PubMed ID: 8804359
    [Abstract] [Full Text] [Related]

  • 15. Immunostaining of the androgen receptor and sequence analysis of its DNA-binding domain in canine prostate cancer.
    Lai CL, van den Ham R, Mol J, Teske E.
    Vet J; 2009 Sep 01; 181(3):256-60. PubMed ID: 18583166
    [Abstract] [Full Text] [Related]

  • 16. Androgen independence of primary epithelial cultures of the prostate is associated with a down-regulation of androgen receptor gene expression.
    Grant ES, Batchelor KW, Habib FK.
    Prostate; 1996 Dec 01; 29(6):339-49. PubMed ID: 8977630
    [Abstract] [Full Text] [Related]

  • 17. Inhibition of LNCaP prostate tumor growth in vivo by an antisense oligonucleotide directed against the human androgen receptor.
    Eder IE, Hoffmann J, Rogatsch H, Schäfer G, Zopf D, Bartsch G, Klocker H.
    Cancer Gene Ther; 2002 Feb 01; 9(2):117-25. PubMed ID: 11857028
    [Abstract] [Full Text] [Related]

  • 18. Conversion from a paracrine to an autocrine mechanism of androgen-stimulated growth during malignant transformation of prostatic epithelial cells.
    Gao J, Arnold JT, Isaacs JT.
    Cancer Res; 2001 Jul 01; 61(13):5038-44. PubMed ID: 11431338
    [Abstract] [Full Text] [Related]

  • 19. The TRPS1 transcription factor: androgenic regulation in prostate cancer and high expression in breast cancer.
    Chang GT, Jhamai M, van Weerden WM, Jenster G, Brinkmann AO.
    Endocr Relat Cancer; 2004 Dec 01; 11(4):815-22. PubMed ID: 15613454
    [Abstract] [Full Text] [Related]

  • 20. Androgen receptor level controlled by a suppressor complex lost in an androgen-independent prostate cancer cell line.
    Wang LG, Ossowski L, Ferrari AC.
    Oncogene; 2004 Jul 01; 23(30):5175-84. PubMed ID: 15156193
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.