These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


115 related items for PubMed ID: 14640686

  • 1. Thermodynamic stability and structural features of the J4/5 loop in a Pneumocystis carinii group I intron.
    Schroeder SJ, Fountain MA, Kennedy SD, Lukavsky PJ, Puglisi JD, Krugh TR, Turner DH.
    Biochemistry; 2003 Dec 09; 42(48):14184-96. PubMed ID: 14640686
    [Abstract] [Full Text] [Related]

  • 2. Structural features and thermodynamics of the J4/5 loop from the Candida albicans and Candida dubliniensis group I introns.
    Znosko BM, Kennedy SD, Wille PC, Krugh TR, Turner DH.
    Biochemistry; 2004 Dec 21; 43(50):15822-37. PubMed ID: 15595837
    [Abstract] [Full Text] [Related]

  • 3. Antisense binding enhanced by tertiary interactions: binding of phosphorothioate and N3'-->P5' phosphoramidate hexanucleotides to the catalytic core of a group I ribozyme from the mammalian pathogen Pneumocystis carinii.
    Testa SM, Gryaznov SM, Turner DH.
    Biochemistry; 1998 Jun 30; 37(26):9379-85. PubMed ID: 9649319
    [Abstract] [Full Text] [Related]

  • 4. A Pneumocystis carinii group I intron ribozyme that does not require 2' OH groups on its 5' exon mimic for binding to the catalytic core.
    Testa SM, Haidaris CG, Gigliotti F, Turner DH.
    Biochemistry; 1997 Dec 09; 36(49):15303-14. PubMed ID: 9398259
    [Abstract] [Full Text] [Related]

  • 5. Differential helix stabilities and sites pre-organized for tertiary interactions revealed by monitoring local nucleotide flexibility in the bI5 group I intron RNA.
    Chamberlin SI, Weeks KM.
    Biochemistry; 2003 Feb 04; 42(4):901-9. PubMed ID: 12549908
    [Abstract] [Full Text] [Related]

  • 6. NMR structure and dynamics of an RNA motif common to the spliceosome branch-point helix and the RNA-binding site for phage GA coat protein.
    Smith JS, Nikonowicz EP.
    Biochemistry; 1998 Sep 29; 37(39):13486-98. PubMed ID: 9753434
    [Abstract] [Full Text] [Related]

  • 7. Solution structure of an RNA internal loop with three consecutive sheared GA pairs.
    Chen G, Znosko BM, Kennedy SD, Krugh TR, Turner DH.
    Biochemistry; 2005 Mar 01; 44(8):2845-56. PubMed ID: 15723528
    [Abstract] [Full Text] [Related]

  • 8. Factors affecting thermodynamic stabilities of RNA 3 x 3 internal loops.
    Chen G, Znosko BM, Jiao X, Turner DH.
    Biochemistry; 2004 Oct 12; 43(40):12865-76. PubMed ID: 15461459
    [Abstract] [Full Text] [Related]

  • 9. Structure and thermodynamics of metal binding in the P5 helix of a group I intron ribozyme.
    Colmenarejo G, Tinoco I.
    J Mol Biol; 1999 Jul 02; 290(1):119-35. PubMed ID: 10388561
    [Abstract] [Full Text] [Related]

  • 10. Nuclear magnetic resonance structure of the Varkud satellite ribozyme stem-loop V RNA and magnesium-ion binding from chemical-shift mapping.
    Campbell DO, Legault P.
    Biochemistry; 2005 Mar 22; 44(11):4157-70. PubMed ID: 15766243
    [Abstract] [Full Text] [Related]

  • 11. Sequence dependence of the stability of RNA hairpin molecules with six nucleotide loops.
    Vecenie CJ, Morrow CV, Zyra A, Serra MJ.
    Biochemistry; 2006 Feb 07; 45(5):1400-7. PubMed ID: 16445282
    [Abstract] [Full Text] [Related]

  • 12. Thermodynamic stabilities of internal loops with GU closing pairs in RNA.
    Schroeder SJ, Turner DH.
    Biochemistry; 2001 Sep 25; 40(38):11509-17. PubMed ID: 11560499
    [Abstract] [Full Text] [Related]

  • 13. 5' transcript replacement in vitro catalyzed by a group I intron-derived ribozyme.
    Alexander RC, Baum DA, Testa SM.
    Biochemistry; 2005 May 31; 44(21):7796-804. PubMed ID: 15909994
    [Abstract] [Full Text] [Related]

  • 14. A Pneumocystis carinii group I intron-derived ribozyme utilizes an endogenous guanosine as the first reaction step nucleophile in the trans excision-splicing reaction.
    Dotson PP, Sinha J, Testa SM.
    Biochemistry; 2008 Apr 22; 47(16):4780-7. PubMed ID: 18363339
    [Abstract] [Full Text] [Related]

  • 15. Factors affecting the thermodynamic stability of small asymmetric internal loops in RNA.
    Schroeder SJ, Turner DH.
    Biochemistry; 2000 Aug 08; 39(31):9257-74. PubMed ID: 10924119
    [Abstract] [Full Text] [Related]

  • 16. Conformation of the Group II intron branch site in solution.
    Schlatterer JC, Crayton SH, Greenbaum NL.
    J Am Chem Soc; 2006 Mar 29; 128(12):3866-7. PubMed ID: 16551067
    [Abstract] [Full Text] [Related]

  • 17. Metal ion stabilization of the U-turn of the A37 N6-dimethylallyl-modified anticodon stem-loop of Escherichia coli tRNAPhe.
    Cabello-Villegas J, Tworowska I, Nikonowicz EP.
    Biochemistry; 2004 Jan 13; 43(1):55-66. PubMed ID: 14705931
    [Abstract] [Full Text] [Related]

  • 18. New approaches to targeting RNA with oligonucleotides: inhibition of group I intron self-splicing.
    Disney MD, Childs JL, Turner DH.
    Biopolymers; 2004 Jan 13; 73(1):151-61. PubMed ID: 14691946
    [Abstract] [Full Text] [Related]

  • 19. Internal bulge and tetraloop of the catalytic domain 5 of a group II intron ribozyme are flexible: implications for catalysis.
    Eldho NV, Dayie KT.
    J Mol Biol; 2007 Jan 26; 365(4):930-44. PubMed ID: 17098254
    [Abstract] [Full Text] [Related]

  • 20. NMR structures of loop B RNAs from the stem-loop IV domain of the enterovirus internal ribosome entry site: a single C to U substitution drastically changes the shape and flexibility of RNA.
    Du Z, Ulyanov NB, Yu J, Andino R, James TL.
    Biochemistry; 2004 May 18; 43(19):5757-71. PubMed ID: 15134450
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.