These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


164 related items for PubMed ID: 1464569

  • 1. Intensity-dependent changes in oxygenation of cochlear perilymph during acoustic exposure.
    Scheibe F, Haupt H, Ludwig C.
    Hear Res; 1992 Nov; 63(1-2):19-25. PubMed ID: 1464569
    [Abstract] [Full Text] [Related]

  • 2. Intensity-related changes in cochlear blood flow in the guinea pig during and following acoustic exposure.
    Scheibe F, Haupt H, Ludwig C.
    Eur Arch Otorhinolaryngol; 1993 Nov; 250(5):281-5. PubMed ID: 8217130
    [Abstract] [Full Text] [Related]

  • 3. Measurements of perilymphatic oxygen tension in guinea pigs exposed to loud sound.
    Haupt H, Scheibe F, Ludwig C, Petzold D.
    Eur Arch Otorhinolaryngol; 1991 Nov; 248(7):413-6. PubMed ID: 1747251
    [Abstract] [Full Text] [Related]

  • 4. The effect of prednisolone and non-steroidal anti-inflammatory agents on the normal and noise-damaged guinea pig inner ear.
    Lamm K, Arnold W.
    Hear Res; 1998 Jan; 115(1-2):149-61. PubMed ID: 9472744
    [Abstract] [Full Text] [Related]

  • 5. Noise-induced cochlear hypoxia is intensity dependent, correlates with hearing loss and precedes reduction of cochlear blood flow.
    Lamm K, Arnold W.
    Audiol Neurootol; 1996 Jan; 1(3):148-60. PubMed ID: 9390798
    [Abstract] [Full Text] [Related]

  • 6. Effects of experimental cochlear thrombosis on oxygenation and auditory function of the inner ear.
    Scheibe F, Haupt H, Baumgärtl H.
    Eur Arch Otorhinolaryngol; 1997 Jan; 254(2):91-4. PubMed ID: 9065663
    [Abstract] [Full Text] [Related]

  • 7. [Effects of acoustic overstimulation of 2F1-F2 distortion product in cochlear microphonics].
    Yoshida M, Aoyagi M, Makishima K.
    Nihon Jibiinkoka Gakkai Kaiho; 1994 Apr; 97(4):680-3. PubMed ID: 8189316
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Does loud sound influence the intracochlear oxygen tension?
    Nuttall AL, Hultcrantz E, Lawrence M.
    Hear Res; 1981 Nov; 5(2-3):285-93. PubMed ID: 7309643
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. [Effects of increasing perilymph calcium levels on various cochlear potentials].
    Hu L, Dong W, Chen J.
    Zhongguo Ying Yong Sheng Li Xue Za Zhi; 1997 May; 13(2):128-30. PubMed ID: 10074232
    [Abstract] [Full Text] [Related]

  • 13. The effects of low-frequency ultrasound on the inner ear: an electrophysiological study using the guinea pig cochlea.
    Ishida A, Matsui T, Yamamura K.
    Eur Arch Otorhinolaryngol; 1993 May; 250(1):22-6. PubMed ID: 8466746
    [Abstract] [Full Text] [Related]

  • 14. Effects of various noise exposures on endocochlear potentials correlated with cochlear gross responses.
    Wang J, Li Q, Dong W, Chen J.
    Hear Res; 1992 Apr; 59(1):31-8. PubMed ID: 1629044
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Effects on cochlear microphonics in guinea pigs induced by prolonged exposure to low-frequency sound.
    Maehara N, Sadamoto T, Yamamura K.
    Eur J Appl Physiol Occup Physiol; 1984 Apr; 52(3):305-9. PubMed ID: 6539683
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.