These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
406 related items for PubMed ID: 14655047
1. Two different heat shock transcription factors regulate immediate early expression of stress genes in Arabidopsis. Lohmann C, Eggers-Schumacher G, Wunderlich M, Schöffl F. Mol Genet Genomics; 2004 Feb; 271(1):11-21. PubMed ID: 14655047 [Abstract] [Full Text] [Related]
2. HsfA1d and HsfA1e involved in the transcriptional regulation of HsfA2 function as key regulators for the Hsf signaling network in response to environmental stress. Nishizawa-Yokoi A, Nosaka R, Hayashi H, Tainaka H, Maruta T, Tamoi M, Ikeda M, Ohme-Takagi M, Yoshimura K, Yabuta Y, Shigeoka S. Plant Cell Physiol; 2011 May; 52(5):933-45. PubMed ID: 21471117 [Abstract] [Full Text] [Related]
3. The calmodulin-binding protein kinase 3 is part of heat-shock signal transduction in Arabidopsis thaliana. Liu HT, Gao F, Li GL, Han JL, Liu DL, Sun DY, Zhou RG. Plant J; 2008 Sep; 55(5):760-73. PubMed ID: 18466301 [Abstract] [Full Text] [Related]
4. Arabidopsis HsfB1 and HsfB2b act as repressors of the expression of heat-inducible Hsfs but positively regulate the acquired thermotolerance. Ikeda M, Mitsuda N, Ohme-Takagi M. Plant Physiol; 2011 Nov; 157(3):1243-54. PubMed ID: 21908690 [Abstract] [Full Text] [Related]
5. Derepression of the activity of genetically engineered heat shock factor causes constitutive synthesis of heat shock proteins and increased thermotolerance in transgenic Arabidopsis. Lee JH, Hübel A, Schöffl F. Plant J; 1995 Oct; 8(4):603-12. PubMed ID: 7496404 [Abstract] [Full Text] [Related]
6. A heat-inducible transcription factor, HsfA2, is required for extension of acquired thermotolerance in Arabidopsis. Charng YY, Liu HC, Liu NY, Chi WT, Wang CN, Chang SH, Wang TT. Plant Physiol; 2007 Jan; 143(1):251-62. PubMed ID: 17085506 [Abstract] [Full Text] [Related]
7. Generation of dominant-negative effects on the heat shock response in Arabidopsis thaliana by transgenic expression of a chimaeric HSF1 protein fusion construct. Wunderlich M, Werr W, Schöffl F. Plant J; 2003 Aug; 35(4):442-51. PubMed ID: 12904207 [Abstract] [Full Text] [Related]
8. Overexpression of Arabidopsis HsfA1a enhances diverse stress tolerance by promoting stress-induced Hsp expression. Qian J, Chen J, Liu YF, Yang LL, Li WP, Zhang LM. Genet Mol Res; 2014 Feb 27; 13(1):1233-43. PubMed ID: 24634180 [Abstract] [Full Text] [Related]
9. Detection of in vivo interactions between Arabidopsis class A-HSFs, using a novel BiFC fragment, and identification of novel class B-HSF interacting proteins. Li M, Doll J, Weckermann K, Oecking C, Berendzen KW, Schöffl F. Eur J Cell Biol; 2010 Feb 27; 89(2-3):126-32. PubMed ID: 19945192 [Abstract] [Full Text] [Related]
10. An Hsp70 antisense gene affects the expression of HSP70/HSC70, the regulation of HSF, and the acquisition of thermotolerance in transgenic Arabidopsis thaliana. Lee JH, Schöffl F. Mol Gen Genet; 1996 Aug 27; 252(1-2):11-9. PubMed ID: 8804399 [Abstract] [Full Text] [Related]
11. Galactinol synthase1. A novel heat shock factor target gene responsible for heat-induced synthesis of raffinose family oligosaccharides in Arabidopsis. Panikulangara TJ, Eggers-Schumacher G, Wunderlich M, Stransky H, Schöffl F. Plant Physiol; 2004 Oct 27; 136(2):3148-58. PubMed ID: 15466240 [Abstract] [Full Text] [Related]
12. HSF3, a new heat shock factor from Arabidopsis thaliana, derepresses the heat shock response and confers thermotolerance when overexpressed in transgenic plants. Prändl R, Hinderhofer K, Eggers-Schumacher G, Schöffl F. Mol Gen Genet; 1998 May 27; 258(3):269-78. PubMed ID: 9645433 [Abstract] [Full Text] [Related]
13. A cascade of transcription factor DREB2A and heat stress transcription factor HsfA3 regulates the heat stress response of Arabidopsis. Schramm F, Larkindale J, Kiehlmann E, Ganguli A, Englich G, Vierling E, von Koskull-Döring P. Plant J; 2008 Jan 27; 53(2):264-74. PubMed ID: 17999647 [Abstract] [Full Text] [Related]
14. Identification of novel heat shock factor-dependent genes and biochemical pathways in Arabidopsis thaliana. Busch W, Wunderlich M, Schöffl F. Plant J; 2005 Jan 27; 41(1):1-14. PubMed ID: 15610345 [Abstract] [Full Text] [Related]
15. Promoter specificity and interactions between early and late Arabidopsis heat shock factors. Li M, Berendzen KW, Schöffl F. Plant Mol Biol; 2010 Jul 27; 73(4-5):559-67. PubMed ID: 20458611 [Abstract] [Full Text] [Related]
16. The heat stress transcription factor HsfA2 serves as a regulatory amplifier of a subset of genes in the heat stress response in Arabidopsis. Schramm F, Ganguli A, Kiehlmann E, Englich G, Walch D, von Koskull-Döring P. Plant Mol Biol; 2006 Mar 27; 60(5):759-72. PubMed ID: 16649111 [Abstract] [Full Text] [Related]
17. Molecular and genetic evidence for the key role of AtCaM3 in heat-shock signal transduction in Arabidopsis. Zhang W, Zhou RG, Gao YJ, Zheng SZ, Xu P, Zhang SQ, Sun DY. Plant Physiol; 2009 Apr 27; 149(4):1773-84. PubMed ID: 19211698 [Abstract] [Full Text] [Related]
18. Arabidopsis heat shock factor is constitutively active in Drosophila and human cells. Hübel A, Lee JH, Wu C, Schöffl F. Mol Gen Genet; 1995 Jul 28; 248(2):136-41. PubMed ID: 7651336 [Abstract] [Full Text] [Related]
19. Histone acetyltransferase GCN5 is essential for heat stress-responsive gene activation and thermotolerance in Arabidopsis. Hu Z, Song N, Zheng M, Liu X, Liu Z, Xing J, Ma J, Guo W, Yao Y, Peng H, Xin M, Zhou DX, Ni Z, Sun Q. Plant J; 2015 Dec 28; 84(6):1178-91. PubMed ID: 26576681 [Abstract] [Full Text] [Related]
20. Arabidopsis heat shock factor HsfA1a directly senses heat stress, pH changes, and hydrogen peroxide via the engagement of redox state. Liu Y, Zhang C, Chen J, Guo L, Li X, Li W, Yu Z, Deng J, Zhang P, Zhang K, Zhang L. Plant Physiol Biochem; 2013 Mar 28; 64():92-8. PubMed ID: 23399534 [Abstract] [Full Text] [Related] Page: [Next] [New Search]