These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


211 related items for PubMed ID: 14658691

  • 1. In situ sensing of volatile organic compounds in groundwater: first field tests of a mid-infrared fiber-optic sensing system.
    Steiner H, Jakusch M, Kraft M, Karlowatz M, Baumann T, Niessner R, Konz W, Brandenburg A, Michel K, Boussard-Plédel C, Bureau B, Lucas J, Reichlin Y, Katzir A, Fleischmann N, Staubmann K, Allabashi R, Bayona JM, Mizaikoff B.
    Appl Spectrosc; 2003 Jun; 57(6):607-13. PubMed ID: 14658691
    [Abstract] [Full Text] [Related]

  • 2. Online sensing of volatile organic compounds in groundwater using mid-infrared fibre optic evanescent wave spectroscopy: a pilot scale test.
    Steiner H, Staubmann K, Allabashi R, Fleischmann N, Katzir A, Reichlin Y, Milzaikoff B.
    Water Sci Technol; 2003 Jun; 47(2):121-6. PubMed ID: 12636070
    [Abstract] [Full Text] [Related]

  • 3. New frontiers for mid-infrared sensors: towards deep sea monitoring with a submarine FT-IR sensor system.
    Kraft M, Jakusch M, Karlowatz M, Katzir A, Mizaikoff B.
    Appl Spectrosc; 2003 Jun; 57(6):591-9. PubMed ID: 14658689
    [Abstract] [Full Text] [Related]

  • 4. Development and optimization of a mid-infrared hollow waveguide gas sensor combined with a supported capillary membrane sampler.
    de Melas F, Pustogov VV, Croitoru N, Mizaikoff B.
    Appl Spectrosc; 2003 Jun; 57(6):600-6. PubMed ID: 14658690
    [Abstract] [Full Text] [Related]

  • 5. Application of a fiber-optic NIR-EFA sensor system for in situ monitoring of aromatic hydrocarbons in contaminated groundwater.
    Buerck J, Roth S, Kraemer K, Scholz M, Klaas N.
    J Hazard Mater; 2001 May 07; 83(1-2):11-28. PubMed ID: 11267742
    [Abstract] [Full Text] [Related]

  • 6. Sol-gel-coated mid-infrared fiber-optic sensors.
    Janotta M, Katzir A, Mizaikoff B.
    Appl Spectrosc; 2003 Jul 07; 57(7):823-8. PubMed ID: 14658661
    [Abstract] [Full Text] [Related]

  • 7. Toward the Required Detection Limits for Volatile Organic Constituents in Marine Environments with Infrared Evanescent Field Chemical Sensors.
    Dettenrieder C, Raichlin Y, Katzir A, Mizaikoff B.
    Sensors (Basel); 2019 Aug 21; 19(17):. PubMed ID: 31438601
    [Abstract] [Full Text] [Related]

  • 8. Determination of hydrocarbons using sapphire fibers coated with poly(dimethylsiloxane).
    Howley R, MacCraith BD, O'Dwyer K, Masterson H, Kirwan P, McLoughlin P.
    Appl Spectrosc; 2003 Apr 21; 57(4):400-6. PubMed ID: 14658636
    [Abstract] [Full Text] [Related]

  • 9. An infrared evanescent wave sensing system coupled with a hollow fiber membrane for detection of volatile organic compounds in aqueous solutions.
    Wei YK, Yang J.
    Anal Sci; 2005 Oct 21; 21(10):1195-201. PubMed ID: 16270578
    [Abstract] [Full Text] [Related]

  • 10. Zeolite thin film-coated long period fiber grating sensor for measuring trace chemical.
    Zhang J, Tang X, Dong J, Wei T, Xiao H.
    Opt Express; 2008 May 26; 16(11):8317-23. PubMed ID: 18545545
    [Abstract] [Full Text] [Related]

  • 11. Membrane-introduced infrared spectroscopic chemical sensing method for the detection of volatile organic compounds in aqueous solutions.
    Yang J, Ramesh A.
    Analyst; 2005 Mar 26; 130(3):397-403. PubMed ID: 15724171
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Hollow-fiber-based flexible probe for remote measurement of infrared attenuated total reflection.
    Matsuura Y, Kino S, Katagiri T.
    Appl Opt; 2009 Oct 01; 48(28):5396-400. PubMed ID: 19798380
    [Abstract] [Full Text] [Related]

  • 14. Simultaneous correction of the influence of skin color and fat on tissue spectroscopy by use of a two-distance fiber-optic probe and orthogonalization technique.
    Yang Y, Landry MR, Soyemi OO, Shear MA, Anunciacion DS, Soller BR.
    Opt Lett; 2005 Sep 01; 30(17):2269-71. PubMed ID: 16190440
    [Abstract] [Full Text] [Related]

  • 15. Determination of chlorinated hydrocarbons in water using highly sensitive mid-infrared sensor technology.
    Lu R, Mizaikoff B, Li WW, Qian C, Katzir A, Raichlin Y, Sheng GP, Yu HQ.
    Sci Rep; 2013 Sep 01; 3():2525. PubMed ID: 23982222
    [Abstract] [Full Text] [Related]

  • 16. Use of a geometry optimized fiber-optic surface-enhanced Raman scattering sensor in trace detection.
    Lucotti A, Pesapane A, Zerbi G.
    Appl Spectrosc; 2007 Mar 01; 61(3):260-8. PubMed ID: 17389065
    [Abstract] [Full Text] [Related]

  • 17. Simultaneous quantitative determination of benzene, toluene, and xylenes in water using mid-infrared evanescent field spectroscopy.
    Karlowatz M, Kraft M, Mizaikoff B.
    Anal Chem; 2004 May 01; 76(9):2643-8. PubMed ID: 15117210
    [Abstract] [Full Text] [Related]

  • 18. Performance of semipermeable membrane devices for sampling of organic contaminants in groundwater.
    Vrana B, Paschke H, Paschke A, Popp P, Schuurmann G.
    J Environ Monit; 2005 May 01; 7(5):500-8. PubMed ID: 15877173
    [Abstract] [Full Text] [Related]

  • 19. Highly versatile fiber-based optical Fabry-Pérot gas sensor.
    Liu J, Sun Y, Fan X.
    Opt Express; 2009 Feb 16; 17(4):2731-8. PubMed ID: 19219178
    [Abstract] [Full Text] [Related]

  • 20. Development of a 2-channel embedded infrared fiber-optic temperature sensor using silver halide optical fibers.
    Yoo WJ, Jang KW, Seo JK, Moon J, Han KT, Park JY, Park BG, Lee B.
    Sensors (Basel); 2011 Feb 16; 11(10):9549-59. PubMed ID: 22163711
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.