These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
164 related items for PubMed ID: 14660355
1. Efficient degradation of 2,4,6-Trichlorophenol requires a set of catabolic genes related to tcp genes from Ralstonia eutropha JMP134(pJP4). Matus V, Sánchez MA, Martínez M, González B. Appl Environ Microbiol; 2003 Dec; 69(12):7108-15. PubMed ID: 14660355 [Abstract] [Full Text] [Related]
2. Genetic and biochemical characterization of a 2,4,6-trichlorophenol degradation pathway in Ralstonia eutropha JMP134. Louie TM, Webster CM, Xun L. J Bacteriol; 2002 Jul; 184(13):3492-500. PubMed ID: 12057943 [Abstract] [Full Text] [Related]
3. Genetic characterization of 2,4,6-trichlorophenol degradation in Cupriavidus necator JMP134. Sánchez MA, González B. Appl Environ Microbiol; 2007 May; 73(9):2769-76. PubMed ID: 17322325 [Abstract] [Full Text] [Related]
4. Degradation of 2,4,6-trichlorophenol via chlorohydroxyquinol in Ralstonia eutropha JMP134 and JMP222. Padilla L, Matus V, Zenteno P, González B. J Basic Microbiol; 2000 May; 40(4):243-9. PubMed ID: 10986670 [Abstract] [Full Text] [Related]
6. Genuine genetic redundancy in maleylacetate-reductase-encoding genes involved in degradation of haloaromatic compounds by Cupriavidus necator JMP134. Pérez-Pantoja D, Donoso RA, Sánchez MA, González B. Microbiology (Reading); 2009 Nov; 155(Pt 11):3641-3651. PubMed ID: 19684066 [Abstract] [Full Text] [Related]
7. Molecular characterization of a deletion/duplication rearrangement in tfd genes from Ralstonia eutropha JMP134(pJP4) that improves growth on 3-chlorobenzoic acid but abolishes growth on 2,4-dichlorophenoxyacetic acid. Clément P, Pieper DH, González B. Microbiology (Reading); 2001 Aug; 147(Pt 8):2141-2148. PubMed ID: 11495991 [Abstract] [Full Text] [Related]
8. Novel insights into the interplay between peripheral reactions encoded by xyl genes and the chlorocatechol pathway encoded by tfd genes for the degradation of chlorobenzoates by Ralstonia eutropha JMP134. Ledger T, Pieper DH, Pérez-Pantoja D, González B. Microbiology (Reading); 2002 Nov; 148(Pt 11):3431-3440. PubMed ID: 12427935 [Abstract] [Full Text] [Related]
9. Characterization of a second tfd gene cluster for chlorophenol and chlorocatechol metabolism on plasmid pJP4 in Ralstonia eutropha JMP134(pJP4). Laemmli CM, Leveau JH, Zehnder AJ, van der Meer JR. J Bacteriol; 2000 Aug; 182(15):4165-72. PubMed ID: 10894723 [Abstract] [Full Text] [Related]
10. The copy number of the catabolic plasmid pJP4 affects growth of Ralstonia eutropha JMP134 (pJP4) on 3-chlorobenzoate. Trefault N, Clément P, Manzano M, Pieper DH, González B. FEMS Microbiol Lett; 2002 Jun 18; 212(1):95-100. PubMed ID: 12076793 [Abstract] [Full Text] [Related]
11. Functions of flavin reductase and quinone reductase in 2,4,6-trichlorophenol degradation by Cupriavidus necator JMP134. Belchik SM, Xun L. J Bacteriol; 2008 Mar 18; 190(5):1615-9. PubMed ID: 18165297 [Abstract] [Full Text] [Related]
13. Role of eukaryotic microbiota in soil survival and catabolic performance of the 2,4-D herbicide degrading bacteria Cupriavidus necator JMP134. Manzano M, Morán AC, Tesser B, González B. Antonie Van Leeuwenhoek; 2007 Feb 18; 91(2):115-26. PubMed ID: 17043913 [Abstract] [Full Text] [Related]
14. Chemotaxis of Ralstonia eutropha JMP134(pJP4) to the herbicide 2,4-dichlorophenoxyacetate. Hawkins AC, Harwood CS. Appl Environ Microbiol; 2002 Feb 18; 68(2):968-72. PubMed ID: 11823246 [Abstract] [Full Text] [Related]
15. Efficient turnover of chlorocatechols is essential for growth of Ralstonia eutropha JMP134(pJP4) in 3-chlorobenzoic acid. Pérez-Pantoja D, Ledger T, Pieper DH, González B. J Bacteriol; 2003 Mar 18; 185(5):1534-42. PubMed ID: 12591870 [Abstract] [Full Text] [Related]
16. Mutation analysis of the different tfd genes for degradation of chloroaromatic compounds in Ralstonia eutropha JMP134. Laemmli C, Werlen C, van der Meer JR. Arch Microbiol; 2004 Feb 18; 181(2):112-21. PubMed ID: 14676989 [Abstract] [Full Text] [Related]
17. Metabolic reconstruction of aromatic compounds degradation from the genome of the amazing pollutant-degrading bacterium Cupriavidus necator JMP134. Pérez-Pantoja D, De la Iglesia R, Pieper DH, González B. FEMS Microbiol Rev; 2008 Aug 18; 32(5):736-94. PubMed ID: 18691224 [Abstract] [Full Text] [Related]
18. Earthworm egg capsules as vectors for the environmental introduction of biodegradative bacteria. Daane LL, Häggblom MM. Appl Environ Microbiol; 1999 Jun 18; 65(6):2376-81. PubMed ID: 10347016 [Abstract] [Full Text] [Related]
19. A previously unexposed forest soil microbial community degrades high levels of the pollutant 2,4,6-trichlorophenol. Sánchez MA, Vásquez M, González B. Appl Environ Microbiol; 2004 Dec 18; 70(12):7567-70. PubMed ID: 15574963 [Abstract] [Full Text] [Related]
20. A beta-barrel outer membrane protein facilitates cellular uptake of polychlorophenols in Cupriavidus necator. Belchik SM, Schaeffer SM, Hasenoehrl S, Xun L. Biodegradation; 2010 Jun 18; 21(3):431-9. PubMed ID: 19937267 [Abstract] [Full Text] [Related] Page: [Next] [New Search]