These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


243 related items for PubMed ID: 14661088

  • 1. Histidine and lysine as targets of oxidative modification.
    Uchida K.
    Amino Acids; 2003 Dec; 25(3-4):249-57. PubMed ID: 14661088
    [Abstract] [Full Text] [Related]

  • 2. Quantitative analysis of acrolein-specific adducts generated during lipid peroxidation-modification of proteins in vitro: identification of N(τ)-(3-propanal)histidine as the major adduct.
    Maeshima T, Honda K, Chikazawa M, Shibata T, Kawai Y, Akagawa M, Uchida K.
    Chem Res Toxicol; 2012 Jul 16; 25(7):1384-92. PubMed ID: 22716039
    [Abstract] [Full Text] [Related]

  • 3. Protein N-acylation: H2O2-mediated covalent modification of protein by lipid peroxidation-derived saturated aldehydes.
    Ishino K, Shibata T, Ishii T, Liu YT, Toyokuni S, Zhu X, Sayre LM, Uchida K.
    Chem Res Toxicol; 2008 Jun 16; 21(6):1261-70. PubMed ID: 18512967
    [Abstract] [Full Text] [Related]

  • 4. Chemical nature of stochastic generation of protein-based carbonyls: metal-catalyzed oxidation versus modification by products of lipid oxidation.
    Yuan Q, Zhu X, Sayre LM.
    Chem Res Toxicol; 2007 Jan 16; 20(1):129-39. PubMed ID: 17226935
    [Abstract] [Full Text] [Related]

  • 5. Lipid peroxidation of membrane phospholipids generates hydroxy-alkenals and oxidized phospholipids active in physiological and/or pathological conditions.
    Catalá A.
    Chem Phys Lipids; 2009 Jan 16; 157(1):1-11. PubMed ID: 18977338
    [Abstract] [Full Text] [Related]

  • 6. Radiolytic modification of basic amino acid residues in peptides: probes for examining protein-protein interactions.
    Xu G, Takamoto K, Chance MR.
    Anal Chem; 2003 Dec 15; 75(24):6995-7007. PubMed ID: 14670063
    [Abstract] [Full Text] [Related]

  • 7. Recent advances in the analysis of oxidized proteins.
    Requena JR, Levine RL, Stadtman ER.
    Amino Acids; 2003 Dec 15; 25(3-4):221-6. PubMed ID: 14661085
    [Abstract] [Full Text] [Related]

  • 8. Characterization of oxidation products from 1-palmitoyl-2-linoleoyl-sn-glycerophosphatidylcholine in aqueous solutions and their reactions with cysteine, histidine and lysine residues.
    Milic I, Fedorova M, Teuber K, Schiller J, Hoffmann R.
    Chem Phys Lipids; 2012 Feb 15; 165(2):186-96. PubMed ID: 22222463
    [Abstract] [Full Text] [Related]

  • 9. Model studies on the metal-catalyzed protein oxidation: structure of a possible His-Lys cross-link.
    Liu Y, Sun G, David A, Sayre LM.
    Chem Res Toxicol; 2004 Jan 15; 17(1):110-8. PubMed ID: 14727925
    [Abstract] [Full Text] [Related]

  • 10. Conversion of lysine to N(epsilon)-(carboxymethyl)lysine increases susceptibility of proteins to metal-catalyzed oxidation.
    Requena JR, Stadtman ER.
    Biochem Biophys Res Commun; 1999 Oct 14; 264(1):207-11. PubMed ID: 10527866
    [Abstract] [Full Text] [Related]

  • 11. Model studies on protein side chain modification by 4-oxo-2-nonenal.
    Zhang WH, Liu J, Xu G, Yuan Q, Sayre LM.
    Chem Res Toxicol; 2003 Apr 14; 16(4):512-23. PubMed ID: 12703968
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Products of Cu(II)-catalyzed oxidation of alpha-synuclein fragments containing M1-D2 and H50 residues in the presence of hydrogen peroxide.
    Kowalik-Jankowska T, Rajewska A, Jankowska E, Grzonka Z.
    Dalton Trans; 2008 Feb 14; (6):832-8. PubMed ID: 18239841
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Modulation of protein function by isoketals and levuglandins.
    Davies SS.
    Subcell Biochem; 2008 Feb 14; 49():49-70. PubMed ID: 18751907
    [Abstract] [Full Text] [Related]

  • 19. Structural characterization of a 4-hydroxy-2-alkenal-derived fluorophore that contributes to lipoperoxidation-dependent protein cross-linking in aging and degenerative disease.
    Xu G, Sayre LM.
    Chem Res Toxicol; 1998 Apr 14; 11(4):247-51. PubMed ID: 9548794
    [Abstract] [Full Text] [Related]

  • 20. 2-Alkenal modification of hemoglobin: Identification of a novel hemoglobin-specific alkanoic acid-histidine adduct.
    Yoshitake J, Shibata T, Shimayama C, Uchida K.
    Redox Biol; 2019 May 14; 23():101115. PubMed ID: 30819615
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.