These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


243 related items for PubMed ID: 14661088

  • 21. Chemistry and analysis of HNE and other prominent carbonyl-containing lipid oxidation compounds.
    Sousa BC, Pitt AR, Spickett CM.
    Free Radic Biol Med; 2017 Oct; 111():294-308. PubMed ID: 28192230
    [Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26. Structural elucidation of a 2:2 4-ketoaldehyde-amine adduct as a model for lysine-directed cross-linking of proteins by 4-ketoaldehydes.
    Xu G, Sayre LM.
    Chem Res Toxicol; 1999 Sep; 12(9):862-8. PubMed ID: 10490509
    [Abstract] [Full Text] [Related]

  • 27. Oxygenation of (3Z)-alkenals to 4-hydroxy-(2E)-alkenals in plant extracts: a nonenzymatic process.
    Noordermeer MA, Feussner I, Kolbe A, Veldink GA, Vliegenthart JF.
    Biochem Biophys Res Commun; 2000 Oct 14; 277(1):112-6. PubMed ID: 11027649
    [Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29. Aldehydes in cigarette smoke react with the lipid peroxidation product malonaldehyde to form fluorescent protein adducts on lysines.
    Freeman TL, Haver A, Duryee MJ, Tuma DJ, Klassen LW, Hamel FG, White RL, Rennard SI, Thiele GM.
    Chem Res Toxicol; 2005 May 14; 18(5):817-24. PubMed ID: 15892575
    [Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34. Lipidomic analysis for lipid peroxidation-derived aldehydes using gas chromatography-mass spectrometry.
    Kawai Y, Takeda S, Terao J.
    Chem Res Toxicol; 2007 Jan 14; 20(1):99-107. PubMed ID: 17226932
    [Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37. Antibody-catalyzed benzoin oxidation as a mechanistic probe for nucleophilic catalysis by an active site lysine.
    Sklute G, Oizerowich R, Shulman H, Keinan E.
    Chemistry; 2004 May 03; 10(9):2159-65. PubMed ID: 15112204
    [Abstract] [Full Text] [Related]

  • 38. Dioxygenases without requirement for cofactors and their chemical model reaction: compulsory order ternary complex mechanism of 1H-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase involving general base catalysis by histidine 251 and single-electron oxidation of the substrate dianion.
    Frerichs-Deeken U, Ranguelova K, Kappl R, Hüttermann J, Fetzner S.
    Biochemistry; 2004 Nov 16; 43(45):14485-99. PubMed ID: 15533053
    [Abstract] [Full Text] [Related]

  • 39. Reactivity of histidine and lysine side-chains with diethylpyrocarbonate -- a method to identify surface exposed residues in proteins.
    Hnízda A, Santrůcek J, Sanda M, Strohalm M, Kodícek M.
    J Biochem Biophys Methods; 2008 Apr 24; 70(6):1091-7. PubMed ID: 17765977
    [Abstract] [Full Text] [Related]

  • 40. Evaluation of three simple direct or indirect carbonyl detection methods for characterization of oxidative modifications of proteins.
    Vásquez-Garzón VR, Rouimi P, Jouanin I, Waeg G, Zarkovic N, Villa-Treviño S, Guéraud F.
    Toxicol Mech Methods; 2012 May 24; 22(4):296-304. PubMed ID: 22475225
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 13.