These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Phosphorylation of highly conserved neurofilament medium KSP repeats is not required for myelin-dependent radial axonal growth. Garcia ML, Rao MV, Fujimoto J, Garcia VB, Shah SB, Crum J, Gotow T, Uchiyama Y, Ellisman M, Calcutt NA, Cleveland DW. J Neurosci; 2009 Feb 04; 29(5):1277-84. PubMed ID: 19193875 [Abstract] [Full Text] [Related]
3. Gene replacement in mice reveals that the heavily phosphorylated tail of neurofilament heavy subunit does not affect axonal caliber or the transit of cargoes in slow axonal transport. Rao MV, Garcia ML, Miyazaki Y, Gotow T, Yuan A, Mattina S, Ward CM, Calcutt NA, Uchiyama Y, Nixon RA, Cleveland DW. J Cell Biol; 2002 Aug 19; 158(4):681-93. PubMed ID: 12186852 [Abstract] [Full Text] [Related]
4. The neurofilament middle molecular mass subunit carboxyl-terminal tail domains is essential for the radial growth and cytoskeletal architecture of axons but not for regulating neurofilament transport rate. Rao MV, Campbell J, Yuan A, Kumar A, Gotow T, Uchiyama Y, Nixon RA. J Cell Biol; 2003 Dec 08; 163(5):1021-31. PubMed ID: 14662746 [Abstract] [Full Text] [Related]
5. Deleting the phosphorylated tail domain of the neurofilament heavy subunit does not alter neurofilament transport rate in vivo. Yuan A, Nixon RA, Rao MV. Neurosci Lett; 2006 Jan 30; 393(2-3):264-8. PubMed ID: 16266786 [Abstract] [Full Text] [Related]
6. Neurofilament-dependent radial growth of motor axons and axonal organization of neurofilaments does not require the neurofilament heavy subunit (NF-H) or its phosphorylation. Rao MV, Houseweart MK, Williamson TL, Crawford TO, Folmer J, Cleveland DW. J Cell Biol; 1998 Oct 05; 143(1):171-81. PubMed ID: 9763429 [Abstract] [Full Text] [Related]
7. Local Acceleration of Neurofilament Transport at Nodes of Ranvier. Walker CL, Uchida A, Li Y, Trivedi N, Fenn JD, Monsma PC, Lariviére RC, Julien JP, Jung P, Brown A. J Neurosci; 2019 Jan 23; 39(4):663-677. PubMed ID: 30541916 [Abstract] [Full Text] [Related]
8. Local control of neurofilament accumulation during radial growth of myelinating axons in vivo. Selective role of site-specific phosphorylation. Sánchez I, Hassinger L, Sihag RK, Cleveland DW, Mohan P, Nixon RA. J Cell Biol; 2000 Nov 27; 151(5):1013-24. PubMed ID: 11086003 [Abstract] [Full Text] [Related]
9. Expansion of neurofilament medium C terminus increases axonal diameter independent of increases in conduction velocity or myelin thickness. Barry DM, Stevenson W, Bober BG, Wiese PJ, Dale JM, Barry GS, Byers NS, Strope JD, Chang R, Schulz DJ, Shah S, Calcutt NA, Gebremichael Y, Garcia ML. J Neurosci; 2012 May 02; 32(18):6209-19. PubMed ID: 22553027 [Abstract] [Full Text] [Related]
10. Electrophysiological properties of axons in mice lacking neurofilament subunit genes: disparity between conduction velocity and axon diameter in absence of NF-H. Kriz J, Zhu Q, Julien JP, Padjen AL. Brain Res; 2000 Dec 01; 885(1):32-44. PubMed ID: 11121527 [Abstract] [Full Text] [Related]
11. Myelin-associated glycoprotein is a myelin signal that modulates the caliber of myelinated axons. Yin X, Crawford TO, Griffin JW, Tu Ph, Lee VM, Li C, Roder J, Trapp BD. J Neurosci; 1998 Mar 15; 18(6):1953-62. PubMed ID: 9482781 [Abstract] [Full Text] [Related]
12. Axonal neurofilaments control multiple fiber properties but do not influence structure or spacing of nodes of Ranvier. Perrot R, Lonchampt P, Peterson AC, Eyer J. J Neurosci; 2007 Sep 05; 27(36):9573-84. PubMed ID: 17804618 [Abstract] [Full Text] [Related]
13. Subunit composition of neurofilaments specifies axonal diameter. Xu Z, Marszalek JR, Lee MK, Wong PC, Folmer J, Crawford TO, Hsieh ST, Griffin JW, Cleveland DW. J Cell Biol; 1996 Jun 05; 133(5):1061-9. PubMed ID: 8655579 [Abstract] [Full Text] [Related]
14. Internode length is reduced during myelination and remyelination by neurofilament medium phosphorylation in motor axons. Villalón E, Barry DM, Byers N, Frizzi K, Jones MR, Landayan DS, Dale JM, Downer NL, Calcutt NA, Garcia ML. Exp Neurol; 2018 Aug 05; 306():158-168. PubMed ID: 29772247 [Abstract] [Full Text] [Related]
16. Involvement of neurofilaments in the radial growth of axons. Cleveland DW, Monteiro MJ, Wong PC, Gill SR, Gearhart JD, Hoffman PN. J Cell Sci Suppl; 1991 Nov 05; 15():85-95. PubMed ID: 1824110 [Abstract] [Full Text] [Related]
17. Novel axonal distribution of neurofilament-H phosphorylated at the glycogen synthase kinase 3beta-phosphorylation site in its E-segment. Sasaki T, Ishiguro K, Hisanaga S. J Neurosci Res; 2009 Nov 01; 87(14):3088-97. PubMed ID: 19530163 [Abstract] [Full Text] [Related]
18. Altered ionic conductances in axons of transgenic mouse expressing the human neurofilament heavy gene: A mouse model of amyotrophic lateral sclerosis. Kriz J, Meier J, Julien JP, Padjen AL. Exp Neurol; 2000 Jun 01; 163(2):414-21. PubMed ID: 10833316 [Abstract] [Full Text] [Related]
19. Cyclin-dependent kinase 5 in neurofilament function and regulation. Kesavapany S, Li BS, Pant HC. Neurosignals; 2003 Jun 01; 12(4-5):252-64. PubMed ID: 14673212 [Abstract] [Full Text] [Related]
20. Mice with disrupted midsized and heavy neurofilament genes lack axonal neurofilaments but have unaltered numbers of axonal microtubules. Elder GA, Friedrich VL, Pereira D, Tu PH, Zhang B, Lee VM, Lazzarini RA. J Neurosci Res; 1999 Jul 01; 57(1):23-32. PubMed ID: 10397632 [Abstract] [Full Text] [Related] Page: [Next] [New Search]