These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
145 related items for PubMed ID: 14670957
21. Structural basis for substrate recognition by Erwinia chrysanthemi GH30 glucuronoxylanase. Urbániková L, Vršanská M, Mørkeberg Krogh KB, Hoff T, Biely P. FEBS J; 2011 Jun; 278(12):2105-16. PubMed ID: 21501386 [Abstract] [Full Text] [Related]
22. Structure and function of an arabinoxylan-specific xylanase. Correia MA, Mazumder K, Brás JL, Firbank SJ, Zhu Y, Lewis RJ, York WS, Fontes CM, Gilbert HJ. J Biol Chem; 2011 Jun 24; 286(25):22510-20. PubMed ID: 21378160 [Abstract] [Full Text] [Related]
23. Two-domain GH30 xylanase from human gut microbiota as a tool for enzymatic production of xylooligosaccharides: Crystallographic structure and a synergy with GH11 xylosidase. Vacilotto MM, de Araujo Montalvão L, Pellegrini VOA, Liberato MV, de Araujo EA, Polikarpov I. Carbohydr Polym; 2024 Aug 01; 337():122141. PubMed ID: 38710568 [Abstract] [Full Text] [Related]
24. X-ray crystallographic study of xylopentaose binding to Pseudomonas fluorescens xylanase A. Leggio LL, Jenkins J, Harris GW, Pickersgill RW. Proteins; 2000 Nov 15; 41(3):362-73. PubMed ID: 11025547 [Abstract] [Full Text] [Related]
25. Structure-guided design combined with evolutionary diversity led to the discovery of the xylose-releasing exo-xylanase activity in the glycoside hydrolase family 43. Zanphorlin LM, de Morais MAB, Diogo JA, Domingues MN, de Souza FHM, Ruller R, Murakami MT. Biotechnol Bioeng; 2019 Apr 15; 116(4):734-744. PubMed ID: 30556897 [Abstract] [Full Text] [Related]
26. Modular glucuronoxylan-specific xylanase with a family CBM35 carbohydrate-binding module. Valenzuela SV, Diaz P, Pastor FI. Appl Environ Microbiol; 2012 Jun 15; 78(11):3923-31. PubMed ID: 22447606 [Abstract] [Full Text] [Related]
27. The effect of an oligosaccharide reducing-end xylanase, BhRex8A, on the synergistic degradation of xylan backbones by an optimised xylanolytic enzyme cocktail. Malgas S, Pletschke BI. Enzyme Microb Technol; 2019 Mar 15; 122():74-81. PubMed ID: 30638511 [Abstract] [Full Text] [Related]
28. The X6 "thermostabilizing" domains of xylanases are carbohydrate-binding modules: structure and biochemistry of the Clostridium thermocellum X6b domain. Charnock SJ, Bolam DN, Turkenburg JP, Gilbert HJ, Ferreira LM, Davies GJ, Fontes CM. Biochemistry; 2000 May 02; 39(17):5013-21. PubMed ID: 10819965 [Abstract] [Full Text] [Related]
29. Paenibacillus curdlanolyticus B-6 xylanase Xyn10C capable of producing a doubly arabinose-substituted xylose, α-L-Araf-(1→2)-[α-L-Araf-(1→3)]-D-Xylp, from rye arabinoxylan. Imjongjairak S, Jommuengbout P, Karpilanondh P, Katsuzaki H, Sakka M, Kimura T, Pason P, Tachaapaikoon C, Romsaiyud J, Ratanakhanokchai K, Sakka K. Enzyme Microb Technol; 2015 May 02; 72():1-9. PubMed ID: 25837501 [Abstract] [Full Text] [Related]
30. Substrate specificity of Streptomyces beta-xylanase toward glucoxylan. Yoshida S, Satoh T, Shimokawa S, Oku T, Ito T, Kusakabe I. Biosci Biotechnol Biochem; 1994 Jun 02; 58(6):1041-4. PubMed ID: 7765032 [Abstract] [Full Text] [Related]
31. Structure of rice-straw arabinoglucuronoxylan and specificity of Streptomyces xylanase toward the xylan. Yoshida S, Kusakabe I, Matsuo N, Shimizu K, Yasui T, Murakami K. Agric Biol Chem; 1990 Feb 02; 54(2):449-57. PubMed ID: 1368510 [Abstract] [Full Text] [Related]
32. GH30 Glucuronoxylan-Specific Xylanase from Streptomyces turgidiscabies C56. Maehara T, Yagi H, Sato T, Ohnishi-Kameyama M, Fujimoto Z, Kamino K, Kitamura Y, St John F, Yaoi K, Kaneko S. Appl Environ Microbiol; 2018 Feb 15; 84(4):. PubMed ID: 29180367 [Abstract] [Full Text] [Related]
33. Structural analysis of the reducing-end xylose-releasing exo-oligoxylanase Rex8A from Paenibacillus barcinonensis BP-23 deciphers its molecular specificity. Jiménez-Ortega E, Valenzuela S, Ramírez-Escudero M, Pastor FJ, Sanz-Aparicio J. FEBS J; 2020 Dec 15; 287(24):5362-5374. PubMed ID: 32352213 [Abstract] [Full Text] [Related]
34. Characterization of a xylanase belonging to the glycoside hydrolase family 5 subfamily 35 from Paenibacillus sp. H2C. Hagiwara Y, Okeda T, Okuda K, Yatsunami R, Nakamura S. Biosci Biotechnol Biochem; 2022 Dec 21; 87(1):54-62. PubMed ID: 36352459 [Abstract] [Full Text] [Related]
35. Structural and biochemical analysis of Cellvibrio japonicus xylanase 10C: how variation in substrate-binding cleft influences the catalytic profile of family GH-10 xylanases. Pell G, Szabo L, Charnock SJ, Xie H, Gloster TM, Davies GJ, Gilbert HJ. J Biol Chem; 2004 Mar 19; 279(12):11777-88. PubMed ID: 14670951 [Abstract] [Full Text] [Related]
36. A secondary xylan-binding site enhances the catalytic activity of a single-domain family 11 glycoside hydrolase. Ludwiczek ML, Heller M, Kantner T, McIntosh LP. J Mol Biol; 2007 Oct 19; 373(2):337-54. PubMed ID: 17822716 [Abstract] [Full Text] [Related]
37. Determination of the modes of action and synergies of xylanases by analysis of xylooligosaccharide profiles over time using fluorescence-assisted carbohydrate electrophoresis. Gong W, Zhang H, Tian L, Liu S, Wu X, Li F, Wang L. Electrophoresis; 2016 Jul 19; 37(12):1640-50. PubMed ID: 27060349 [Abstract] [Full Text] [Related]
38. An investigation of the nature and function of module 10 in a family F/10 xylanase FXYN of Streptomyces olivaceoviridis E-86 by module shuffling with the Cex of Cellulomonas fimi and by site-directed mutagenesis. Kaneko S, Kuno A, Fujimoto Z, Shimizu D, Machida S, Sato Y, Yura K, Go M, Mizuno H, Taira K, Kusakabe I, Hayashi K. FEBS Lett; 1999 Oct 22; 460(1):61-6. PubMed ID: 10571062 [Abstract] [Full Text] [Related]
39. GH30-7 Endoxylanase C from the Filamentous Fungus Talaromyces cellulolyticus. Nakamichi Y, Fujii T, Fouquet T, Matsushika A, Inoue H. Appl Environ Microbiol; 2019 Nov 15; 85(22):. PubMed ID: 31492671 [Abstract] [Full Text] [Related]
40. Structure features of GH10 xylanase from Caldicellulosiruptor bescii: implication for its thermophilic adaption and substrate binding preference. Zhang Y, An J, Yang G, Zhang X, Xie Y, Chen L, Feng Y. Acta Biochim Biophys Sin (Shanghai); 2016 Oct 15; 48(10):948-957. PubMed ID: 27563004 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]