These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


240 related items for PubMed ID: 14672160

  • 1. Neural network models for the gaze shift system in the superior colliculus and cerebellum.
    Wang X, Jin J, Jabri M.
    Neural Netw; 2002 Sep; 15(7):811-32. PubMed ID: 14672160
    [Abstract] [Full Text] [Related]

  • 2. Activity of cells in the deeper layers of the superior colliculus of the rhesus monkey: evidence for a gaze displacement command.
    Freedman EG, Sparks DL.
    J Neurophysiol; 1997 Sep; 78(3):1669-90. PubMed ID: 9310452
    [Abstract] [Full Text] [Related]

  • 3. Role of superior colliculus in adaptive eye-head coordination during gaze shifts.
    Constantin AG, Wang H, Crawford JD.
    J Neurophysiol; 2004 Oct; 92(4):2168-84. PubMed ID: 15190087
    [Abstract] [Full Text] [Related]

  • 4. Superior colliculus encodes distance to target, not saccade amplitude, in multi-step gaze shifts.
    Bergeron A, Matsuo S, Guitton D.
    Nat Neurosci; 2003 Apr; 6(4):404-13. PubMed ID: 12627166
    [Abstract] [Full Text] [Related]

  • 5. The superior colliculus encodes gaze commands in retinal coordinates.
    Klier EM, Wang H, Crawford JD.
    Nat Neurosci; 2001 Jun; 4(6):627-32. PubMed ID: 11369944
    [Abstract] [Full Text] [Related]

  • 6. Brain stem omnipause neurons and the control of combined eye-head gaze saccades in the alert cat.
    Paré M, Guitton D.
    J Neurophysiol; 1998 Jun; 79(6):3060-76. PubMed ID: 9636108
    [Abstract] [Full Text] [Related]

  • 7. Combined eye-head gaze shifts produced by electrical stimulation of the superior colliculus in rhesus monkeys.
    Freedman EG, Stanford TR, Sparks DL.
    J Neurophysiol; 1996 Aug; 76(2):927-52. PubMed ID: 8871209
    [Abstract] [Full Text] [Related]

  • 8. Activity of neurons in monkey superior colliculus during interrupted saccades.
    Munoz DP, Waitzman DM, Wurtz RH.
    J Neurophysiol; 1996 Jun; 75(6):2562-80. PubMed ID: 8793764
    [Abstract] [Full Text] [Related]

  • 9. Neurons in the primate superior colliculus coding for arm movements in gaze-related coordinates.
    Stuphorn V, Bauswein E, Hoffmann KP.
    J Neurophysiol; 2000 Mar; 83(3):1283-99. PubMed ID: 10712456
    [Abstract] [Full Text] [Related]

  • 10. Eye-head coordination during head-unrestrained gaze shifts in rhesus monkeys.
    Freedman EG, Sparks DL.
    J Neurophysiol; 1997 May; 77(5):2328-48. PubMed ID: 9163361
    [Abstract] [Full Text] [Related]

  • 11. In multiple-step gaze shifts: omnipause (OPNs) and collicular fixation neurons encode gaze position error; OPNs gate saccades.
    Bergeron A, Guitton D.
    J Neurophysiol; 2002 Oct; 88(4):1726-42. PubMed ID: 12364502
    [Abstract] [Full Text] [Related]

  • 12. Evidence for gaze feedback to the cat superior colliculus: discharges reflect gaze trajectory perturbations.
    Matsuo S, Bergeron A, Guitton D.
    J Neurosci; 2004 Mar 17; 24(11):2760-73. PubMed ID: 15028769
    [Abstract] [Full Text] [Related]

  • 13. Kinematics and eye-head coordination of gaze shifts evoked from different sites in the superior colliculus of the cat.
    Guillaume A, Pélisson D.
    J Physiol; 2006 Dec 15; 577(Pt 3):779-94. PubMed ID: 17023510
    [Abstract] [Full Text] [Related]

  • 14. Firing patterns in superior colliculus of head-unrestrained monkey during normal and perturbed gaze saccades reveal short-latency feedback and a sluggish rostral shift in activity.
    Choi WY, Guitton D.
    J Neurosci; 2009 Jun 03; 29(22):7166-80. PubMed ID: 19494139
    [Abstract] [Full Text] [Related]

  • 15. Gaze shifts evoked by stimulation of the superior colliculus in the head-free cat conform to the motor map but also depend on stimulus strength and fixation activity.
    Paré M, Crommelinck M, Guitton D.
    Exp Brain Res; 1994 Jun 03; 101(1):123-39. PubMed ID: 7843291
    [Abstract] [Full Text] [Related]

  • 16. Spatial characteristics of neurons in the central mesencephalic reticular formation (cMRF) of head-unrestrained monkeys.
    Pathmanathan JS, Presnell R, Cromer JA, Cullen KE, Waitzman DM.
    Exp Brain Res; 2006 Jan 03; 168(4):455-70. PubMed ID: 16292575
    [Abstract] [Full Text] [Related]

  • 17. 3-Dimensional eye-head coordination in gaze shifts evoked during stimulation of the lateral intraparietal cortex.
    Constantin AG, Wang H, Monteon JA, Martinez-Trujillo JC, Crawford JD.
    Neuroscience; 2009 Dec 15; 164(3):1284-302. PubMed ID: 19733631
    [Abstract] [Full Text] [Related]

  • 18. Head-free gaze shifts provide further insights into the role of the medial cerebellum in the control of primate saccadic eye movements.
    Fuchs AF, Brettler S, Ling L.
    J Neurophysiol; 2010 Apr 15; 103(4):2158-73. PubMed ID: 20164388
    [Abstract] [Full Text] [Related]

  • 19. Analysis of primate IBN spike trains using system identification techniques. III. Relationship To motor error during head-fixed saccades and head-free gaze shifts.
    Cullen KE, Guitton D.
    J Neurophysiol; 1997 Dec 15; 78(6):3307-22. PubMed ID: 9405546
    [Abstract] [Full Text] [Related]

  • 20. Model of the control of saccades by superior colliculus and cerebellum.
    Quaia C, Lefèvre P, Optican LM.
    J Neurophysiol; 1999 Aug 15; 82(2):999-1018. PubMed ID: 10444693
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.