These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Coarse-grained picture of Brownian motion in water: Role of size and interaction distance range on the nature of randomness. Hanasaki I, Nagura R, Kawano S. J Chem Phys; 2015 Mar 14; 142(10):104301. PubMed ID: 25770534 [Abstract] [Full Text] [Related]
8. Understanding the mobility of nonspherical particles in the free molecular regime. Li M, Mulholland GW, Zachariah MR. Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb 14; 89(2):022112. PubMed ID: 25353427 [Abstract] [Full Text] [Related]
9. Large-time dynamics and aging of a polymer chain in a random potential. Goldschmidt YY. Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Aug 14; 74(2 Pt 1):021804. PubMed ID: 17025463 [Abstract] [Full Text] [Related]
10. Understanding collective dynamics of soft active colloids by binary scattering. Hanke T, Weber CA, Frey E. Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov 14; 88(5):052309. PubMed ID: 24329266 [Abstract] [Full Text] [Related]
14. Langevin equations for competitive growth models. Silveira FA, Aarão Reis FD. Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan 14; 85(1 Pt 1):011601. PubMed ID: 22400575 [Abstract] [Full Text] [Related]
15. Rotational Brownian motion of axisymmetric particles in a Maxwell fluid. Volkov VS, Leonov AI. Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Nov 14; 64(5 Pt 1):051113. PubMed ID: 11735906 [Abstract] [Full Text] [Related]
16. Microscopic dynamics of thin hard rods. Otto M, Aspelmeier T, Zippelius A. J Chem Phys; 2006 Apr 21; 124(15):154907. PubMed ID: 16674265 [Abstract] [Full Text] [Related]
17. Random transitions described by the stochastic Smoluchowski-Poisson system and by the stochastic Keller-Segel model. Chavanis PH, Delfini L. Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar 21; 89(3):032139. PubMed ID: 24730821 [Abstract] [Full Text] [Related]
20. Augmented moment method for stochastic ensembles with delayed couplings. I. Langevin model. Hasegawa H. Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Aug 21; 70(2 Pt 1):021911. PubMed ID: 15447519 [Abstract] [Full Text] [Related] Page: [Next] [New Search]