These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
825 related items for PubMed ID: 14684838
1. Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Bais HP, Fall R, Vivanco JM. Plant Physiol; 2004 Jan; 134(1):307-19. PubMed ID: 14684838 [Abstract] [Full Text] [Related]
2. Bacillomycin L and surfactin contribute synergistically to the phenotypic features of Bacillus subtilis 916 and the biocontrol of rice sheath blight induced by Rhizoctonia solani. Luo C, Zhou H, Zou J, Wang X, Zhang R, Xiang Y, Chen Z. Appl Microbiol Biotechnol; 2015 Feb; 99(4):1897-910. PubMed ID: 25398282 [Abstract] [Full Text] [Related]
3. Surfactin triggers biofilm formation of Bacillus subtilis in melon phylloplane and contributes to the biocontrol activity. Zeriouh H, de Vicente A, Pérez-García A, Romero D. Environ Microbiol; 2014 Jul; 16(7):2196-211. PubMed ID: 24308294 [Abstract] [Full Text] [Related]
4. Surfactin variants mediate species-specific biofilm formation and root colonization in Bacillus. Aleti G, Lehner S, Bacher M, Compant S, Nikolic B, Plesko M, Schuhmacher R, Sessitsch A, Brader G. Environ Microbiol; 2016 Sep; 18(8):2634-45. PubMed ID: 27306252 [Abstract] [Full Text] [Related]
5. A two-strain mixture of rhizobacteria elicits induction of systemic resistance against Pseudomonas syringae and Cucumber mosaic virus coupled to promotion of plant growth on Arabidopsis thaliana. Ryu CM, Murphy JF, Reddy MS, Kloepper JW. J Microbiol Biotechnol; 2007 Feb; 17(2):280-6. PubMed ID: 18051759 [Abstract] [Full Text] [Related]
6. Molecular and biochemical characterization of Iranian surfactin-producing Bacillus subtilis isolates and evaluation of their biocontrol potential against Aspergillus flavus and Colletotrichum gloeosporioides. Mohammadipour M, Mousivand M, Salehi Jouzani G, Abbasalizadeh S. Can J Microbiol; 2009 Apr; 55(4):395-404. PubMed ID: 19396239 [Abstract] [Full Text] [Related]
7. Pseudomonas aeruginosa-plant root interactions. Pathogenicity, biofilm formation, and root exudation. Walker TS, Bais HP, Déziel E, Schweizer HP, Rahme LG, Fall R, Vivanco JM. Plant Physiol; 2004 Jan; 134(1):320-31. PubMed ID: 14701912 [Abstract] [Full Text] [Related]
8. Biocontrol activity of Paenibacillus polymyxa AC-1 against Pseudomonas syringae and its interaction with Arabidopsis thaliana. Hong CE, Kwon SY, Park JM. Microbiol Res; 2016 Apr; 185():13-21. PubMed ID: 26946374 [Abstract] [Full Text] [Related]
9. Cyclic di-AMP Acts as an Extracellular Signal That Impacts Bacillus subtilis Biofilm Formation and Plant Attachment. Townsley L, Yannarell SM, Huynh TN, Woodward JJ, Shank EA. mBio; 2018 Mar 27; 9(2):. PubMed ID: 29588402 [Abstract] [Full Text] [Related]
11. Loss of GltB Inhibits Biofilm Formation and Biocontrol Efficiency of Bacillus subtilis Bs916 by Altering the Production of γ-Polyglutamate and Three Lipopeptides. Zhou H, Luo C, Fang X, Xiang Y, Wang X, Zhang R, Chen Z. PLoS One; 2016 Nov 27; 11(5):e0156247. PubMed ID: 27223617 [Abstract] [Full Text] [Related]
13. Efficient colonization and harpins mediated enhancement in growth and biocontrol of wilt disease in tomato by Bacillus subtilis. Gao S, Wu H, Wang W, Yang Y, Xie S, Xie Y, Gao X. Lett Appl Microbiol; 2013 Dec 29; 57(6):526-33. PubMed ID: 23937425 [Abstract] [Full Text] [Related]
14. Inhibition of biofilm formation by Cd2+ on Bacillus subtilis 1JN2 depressed its biocontrol efficiency against Ralstonia wilt on tomato. Yang W, Yan H, Zhang J, Gao Y, Xu W, Shang J, Luo Y. Microbiol Res; 2018 Oct 29; 215():1-6. PubMed ID: 30172295 [Abstract] [Full Text] [Related]
15. Involvement of fengycin-type lipopeptides in the multifaceted biocontrol potential of Bacillus subtilis. Ongena M, Jacques P, Touré Y, Destain J, Jabrane A, Thonart P. Appl Microbiol Biotechnol; 2005 Nov 29; 69(1):29-38. PubMed ID: 15742166 [Abstract] [Full Text] [Related]
16. Genetic variants of the oppA gene are involved in metabolic regulation of surfactin in Bacillus subtilis. Wang X, Chen Z, Feng H, Chen X, Wei L. Microb Cell Fact; 2019 Aug 19; 18(1):141. PubMed ID: 31426791 [Abstract] [Full Text] [Related]
17. The Arabidopsis thaliana JASMONATE INSENSITIVE 1 gene is required for suppression of salicylic acid-dependent defenses during infection by Pseudomonas syringae. Laurie-Berry N, Joardar V, Street IH, Kunkel BN. Mol Plant Microbe Interact; 2006 Jul 19; 19(7):789-800. PubMed ID: 16838791 [Abstract] [Full Text] [Related]
18. Biocontrol of Bacterial Fruit Blotch by Bacillus subtilis 9407 via Surfactin-Mediated Antibacterial Activity and Colonization. Fan H, Zhang Z, Li Y, Zhang X, Duan Y, Wang Q. Front Microbiol; 2017 Jul 19; 8():1973. PubMed ID: 29075242 [Abstract] [Full Text] [Related]
19. A degradation product of the salicylic acid pathway triggers oxidative stress resulting in down-regulation of Bacillus subtilis biofilm formation on Arabidopsis thaliana roots. Rudrappa T, Quinn WJ, Stanley-Wall NR, Bais HP. Planta; 2007 Jul 19; 226(2):283-97. PubMed ID: 17554552 [Abstract] [Full Text] [Related]