These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
270 related items for PubMed ID: 14690376
1. Multiple forms of xylose reductase in Candida intermedia: comparison of their functional properties using quantitative structure-activity relationships, steady-state kinetic analysis, and pH studies. Nidetzky B, Brüggler K, Kratzer R, Mayr P. J Agric Food Chem; 2003 Dec 31; 51(27):7930-5. PubMed ID: 14690376 [Abstract] [Full Text] [Related]
2. Studies of the enzymic mechanism of Candida tenuis xylose reductase (AKR 2B5): X-ray structure and catalytic reaction profile for the H113A mutant. Kratzer R, Kavanagh KL, Wilson DK, Nidetzky B. Biochemistry; 2004 May 04; 43(17):4944-54. PubMed ID: 15109252 [Abstract] [Full Text] [Related]
3. Binding energy and specificity in the catalytic mechanism of yeast aldose reductases. Nidetzky B, Mayr P, Hadwiger P, Stütz AE. Biochem J; 1999 Nov 15; 344 Pt 1(Pt 1):101-7. PubMed ID: 10548539 [Abstract] [Full Text] [Related]
4. Catalytic reaction profile for NADH-dependent reduction of aromatic aldehydes by xylose reductase from Candida tenuis. Mayr P, Nidetzky B. Biochem J; 2002 Sep 15; 366(Pt 3):889-99. PubMed ID: 12003638 [Abstract] [Full Text] [Related]
5. Electrostatic stabilization in a pre-organized polar active site: the catalytic role of Lys-80 in Candida tenuis xylose reductase (AKR2B5) probed by site-directed mutagenesis and functional complementation studies. Kratzer R, Nidetzky B. Biochem J; 2005 Jul 15; 389(Pt 2):507-15. PubMed ID: 15799715 [Abstract] [Full Text] [Related]
6. Transient-state and steady-state kinetic studies of the mechanism of NADH-dependent aldehyde reduction catalyzed by xylose reductase from the yeast Candida tenuis. Nidetzky B, Klimacek M, Mayr P. Biochemistry; 2001 Aug 28; 40(34):10371-81. PubMed ID: 11513616 [Abstract] [Full Text] [Related]
7. Structure of xylose reductase bound to NAD+ and the basis for single and dual co-substrate specificity in family 2 aldo-keto reductases. Kavanagh KL, Klimacek M, Nidetzky B, Wilson DK. Biochem J; 2003 Jul 15; 373(Pt 2):319-26. PubMed ID: 12733986 [Abstract] [Full Text] [Related]
8. Tyr-51 is the proton donor-acceptor for NAD(H)-dependent interconversion of xylose and xylitol by Candida tenuis xylose reductase (AKR2B5). Pival SL, Klimacek M, Kratzer R, Nidetzky B. FEBS Lett; 2008 Dec 10; 582(29):4095-9. PubMed ID: 19026644 [Abstract] [Full Text] [Related]
9. Xylose reductase from the Basidiomycete fungus Cryptococcus flavus: purification, steady-state kinetic characterization, and detailed analysis of the substrate binding pocket using structure-activity relationships. Mayr P, Petschacher B, Nidetzky B. J Biochem; 2003 Apr 10; 133(4):553-62. PubMed ID: 12761304 [Abstract] [Full Text] [Related]
10. The coenzyme specificity of Candida tenuis xylose reductase (AKR2B5) explored by site-directed mutagenesis and X-ray crystallography. Petschacher B, Leitgeb S, Kavanagh KL, Wilson DK, Nidetzky B. Biochem J; 2005 Jan 01; 385(Pt 1):75-83. PubMed ID: 15320875 [Abstract] [Full Text] [Related]
11. Response surface methodology as an approach to determine the optimal activities of xylose reductase and xylitol dehydrogenase enzymes from Candida Mogii. Mayerhoff ZD, Roberto IC, Franco TT. Appl Microbiol Biotechnol; 2006 May 01; 70(6):761-7. PubMed ID: 16505992 [Abstract] [Full Text] [Related]
12. Engineering of a matched pair of xylose reductase and xylitol dehydrogenase for xylose fermentation by Saccharomyces cerevisiae. Krahulec S, Klimacek M, Nidetzky B. Biotechnol J; 2009 May 01; 4(5):684-94. PubMed ID: 19452479 [Abstract] [Full Text] [Related]
13. Structural and functional properties of aldose xylose reductase from the D-xylose-metabolizing yeast Candida tenuis. Nidetzky B, Mayr P, Neuhauser W, Puchberger M. Chem Biol Interact; 2001 Jan 30; 130-132(1-3):583-95. PubMed ID: 11306077 [Abstract] [Full Text] [Related]
14. Mutational study of the role of tyrosine-49 in the Saccharomyces cerevisiae xylose reductase. Jeong EY, Sopher C, Kim IS, Lee H. Yeast; 2001 Aug 30; 18(11):1081-9. PubMed ID: 11481678 [Abstract] [Full Text] [Related]
15. NAD(P)H-dependent aldose reductase from the xylose-assimilating yeast Candida tenuis. Isolation, characterization and biochemical properties of the enzyme. Neuhauser W, Haltrich D, Kulbe KD, Nidetzky B. Biochem J; 1997 Sep 15; 326 ( Pt 3)(Pt 3):683-92. PubMed ID: 9307017 [Abstract] [Full Text] [Related]
17. Insights from modeling the 3D structure of NAD(P)H-dependent D-xylose reductase of Pichia stipitis and its binding interactions with NAD and NADP. Wang JF, Wei DQ, Lin Y, Wang YH, Du HL, Li YX, Chou KC. Biochem Biophys Res Commun; 2007 Jul 27; 359(2):323-9. PubMed ID: 17544374 [Abstract] [Full Text] [Related]
18. Heterologous expression, purification, and characterization of xylose reductase from Candida shehatae. Wang X, Fang B, Luo J, Li W, Zhang L. Biotechnol Lett; 2007 Sep 27; 29(9):1409-12. PubMed ID: 17653624 [Abstract] [Full Text] [Related]
19. Carbon fluxes of xylose-consuming Saccharomyces cerevisiae strains are affected differently by NADH and NADPH usage in HMF reduction. Almeida JR, Bertilsson M, Hahn-Hägerdal B, Lidén G, Gorwa-Grauslund MF. Appl Microbiol Biotechnol; 2009 Sep 27; 84(4):751-61. PubMed ID: 19506862 [Abstract] [Full Text] [Related]
20. Identification of Candida tenuis xylose reductase as highly selective biocatalyst for the synthesis of aromatic alpha-hydroxy esters and improvement of its efficiency by protein engineering. Kratzer R, Nidetzky B. Chem Commun (Camb); 2007 Mar 14; (10):1047-9. PubMed ID: 17325801 [Abstract] [Full Text] [Related] Page: [Next] [New Search]