These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
270 related items for PubMed ID: 14690376
21. [Activity of the key enzymes in xylose-assimilating yeasts at different rates of oxygen transfer to the fermentation medium]. Iablochkova EN, Bolotnikova OI, Mikhaĭlova NP, Nemova NN, Ginak AI. Mikrobiologiia; 2004; 73(2):163-8. PubMed ID: 15198025 [Abstract] [Full Text] [Related]
22. The catalytic mechanism of NADH-dependent reduction of 9,10-phenanthrenequinone by Candida tenuis xylose reductase reveals plasticity in an aldo-keto reductase active site. Pival SL, Klimacek M, Nidetzky B. Biochem J; 2009 Jun 12; 421(1):43-9. PubMed ID: 19368528 [Abstract] [Full Text] [Related]
23. Aldehyde reductase: the role of C-terminal residues in defining substrate and cofactor specificities. Rees-Milton KJ, Jia Z, Green NC, Bhatia M, El-Kabbani O, Flynn TG. Arch Biochem Biophys; 1998 Jul 15; 355(2):137-44. PubMed ID: 9675019 [Abstract] [Full Text] [Related]
24. Influence of pH on the xylose reductase activity of Candida guilliermondii during fed-batch xylitol bioproduction. Godoy De Andrade Rodrigues DC, Da Silva SS, Vitolo M. J Basic Microbiol; 2002 Jul 15; 42(3):201-6. PubMed ID: 12111747 [Abstract] [Full Text] [Related]
25. Mechanistic investigation of a highly active phosphite dehydrogenase mutant and its application for NADPH regeneration. Woodyer R, Zhao H, van der Donk WA. FEBS J; 2005 Aug 15; 272(15):3816-27. PubMed ID: 16045753 [Abstract] [Full Text] [Related]
26. Effect of acetic acid present in bagasse hydrolysate on the activities of xylose reductase and xylitol dehydrogenase in Candida guilliermondii. Lima LH, das Graças de Almeida Felipe M, Vitolo M, Torres FA. Appl Microbiol Biotechnol; 2004 Nov 15; 65(6):734-8. PubMed ID: 15107950 [Abstract] [Full Text] [Related]
27. The expression of a Pichia stipitis xylose reductase mutant with higher K(M) for NADPH increases ethanol production from xylose in recombinant Saccharomyces cerevisiae. Jeppsson M, Bengtsson O, Franke K, Lee H, Hahn-Hägerdal B, Gorwa-Grauslund MF. Biotechnol Bioeng; 2006 Mar 05; 93(4):665-73. PubMed ID: 16372361 [Abstract] [Full Text] [Related]
28. A novel strictly NADPH-dependent Pichia stipitis xylose reductase constructed by site-directed mutagenesis. Khattab SM, Watanabe S, Saimura M, Kodaki T. Biochem Biophys Res Commun; 2011 Jan 14; 404(2):634-7. PubMed ID: 21146502 [Abstract] [Full Text] [Related]
29. Cloning and characterization of the xyl1 gene, encoding an NADH-preferring xylose reductase from Candida parapsilosis, and its functional expression in Candida tropicalis. Lee JK, Koo BS, Kim SY. Appl Environ Microbiol; 2003 Oct 14; 69(10):6179-88. PubMed ID: 14532079 [Abstract] [Full Text] [Related]
30. Initial-rate kinetics of the flavin reductase reaction catalysed by human biliverdin-IXbeta reductase (BVR-B). Cunningham O, Gore MG, Mantle TJ. Biochem J; 2000 Jan 15; 345 Pt 2(Pt 2):393-9. PubMed ID: 10620517 [Abstract] [Full Text] [Related]
31. Properties of the NAD(P)H-dependent xylose reductase from the xylose-fermenting yeast Pichia stipitis. Verduyn C, Van Kleef R, Frank J, Schreuder H, Van Dijken JP, Scheffers WA. Biochem J; 1985 Mar 15; 226(3):669-77. PubMed ID: 3921014 [Abstract] [Full Text] [Related]
32. Probing the substrate binding site of Candida tenuis xylose reductase (AKR2B5) with site-directed mutagenesis. Kratzer R, Leitgeb S, Wilson DK, Nidetzky B. Biochem J; 2006 Jan 01; 393(Pt 1):51-8. PubMed ID: 16336198 [Abstract] [Full Text] [Related]
33. Kinetic mechanism of an aldehyde reductase of Saccharomyces cerevisiae that relieves toxicity of furfural and 5-hydroxymethylfurfural. Jordan DB, Braker JD, Bowman MJ, Vermillion KE, Moon J, Liu ZL. Biochim Biophys Acta; 2011 Dec 01; 1814(12):1686-94. PubMed ID: 21890004 [Abstract] [Full Text] [Related]
34. [Regulation of crystalline lens aldose reductase activity. Nonhyperbolic oxidation kinetics of NADPH by glucose]. Vartanov SS, Pavlov AR, Iaropolov AI. Biokhimiia; 1990 Nov 01; 55(11):2046-57. PubMed ID: 2128191 [Abstract] [Full Text] [Related]
35. Analysis of NADPH supply during xylitol production by engineered Escherichia coli. Chin JW, Khankal R, Monroe CA, Maranas CD, Cirino PC. Biotechnol Bioeng; 2009 Jan 01; 102(1):209-20. PubMed ID: 18698648 [Abstract] [Full Text] [Related]
36. Development of a xylitol biosensor composed of xylitol dehydrogenase and diaphorase. Takamizawa K, Uchida S, Hatsu M, Suzuki T, Kawai K. Can J Microbiol; 2000 Apr 01; 46(4):350-7. PubMed ID: 10779871 [Abstract] [Full Text] [Related]
37. Biochemical properties of xylose reductase prepared from adapted strain of Candida tropicalis. Rafiqul IS, Sakinah AM. Appl Biochem Biotechnol; 2015 Jan 01; 175(1):387-99. PubMed ID: 25300602 [Abstract] [Full Text] [Related]
38. Dissection of the physiological interconversion of 5alpha-DHT and 3alpha-diol by rat 3alpha-HSD via transient kinetics shows that the chemical step is rate-determining: effect of mutating cofactor and substrate-binding pocket residues on catalysis. Heredia VV, Penning TM. Biochemistry; 2004 Sep 28; 43(38):12028-37. PubMed ID: 15379543 [Abstract] [Full Text] [Related]
39. NADPH as a co-substrate for studies of the chlorinating activity of myeloperoxidase. Auchère F, Capeillère-Blandin C. Biochem J; 1999 Nov 01; 343 Pt 3(Pt 3):603-13. PubMed ID: 10527939 [Abstract] [Full Text] [Related]
40. Induction and regulation of D-xylose catabolizing enzymes in Fusarium oxysporum. Singh A, Schügerl K. Biochem Int; 1992 Nov 01; 28(3):481-8. PubMed ID: 1482390 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]