These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Selective enhancement of the activity of C-terminally truncated, but not intact, acetylcholinesterase. Zimmermann M, Grösgen S, Westwell MS, Greenfield SA. J Neurochem; 2008 Jan; 104(1):221-32. PubMed ID: 17986217 [Abstract] [Full Text] [Related]
4. A protease is recovered with a dimeric form of acetylcholinesterase in fetal bovine serum. Michaelson S, Small DH. Brain Res; 1993 May 14; 611(1):75-80. PubMed ID: 8518952 [Abstract] [Full Text] [Related]
5. Site-specific glycosylation analysis of the bovine lysosomal alpha-mannosidase. Faid V, Evjen G, Tollersrud OK, Michalski JC, Morelle W. Glycobiology; 2006 May 14; 16(5):440-61. PubMed ID: 16449350 [Abstract] [Full Text] [Related]
7. Evaluation of a technique to identify acetylcholinesterase C-terminal peptides in human serum samples. Halliday AC, Kim O, Bond CE, Greenfield SA. Chem Biol Interact; 2010 Sep 06; 187(1-3):110-4. PubMed ID: 20156431 [Abstract] [Full Text] [Related]
8. A recombinant form of the catalytic subunit of phosphorylase kinase that is soluble, monomeric, and includes key C-terminal residues. Pete MJ, Liao CX, Bartleson C, Graves DJ. Arch Biochem Biophys; 1999 Jul 01; 367(1):104-14. PubMed ID: 10375405 [Abstract] [Full Text] [Related]
9. Bovine acetylcholinesterase: cloning, expression and characterization. Mendelson I, Kronman C, Ariel N, Shafferman A, Velan B. Biochem J; 1998 Aug 15; 334 ( Pt 1)(Pt 1):251-9. PubMed ID: 9693127 [Abstract] [Full Text] [Related]
10. Characterization of salt-soluble forms of acetylcholinesterase from bovine brain. Liao J, Boschetti N, Mortensen V, Jensen SP, Koch C, Nørgaard-Pedersen B, Brodbeck U. J Neurochem; 1994 Oct 15; 63(4):1446-53. PubMed ID: 7931296 [Abstract] [Full Text] [Related]
11. Exact molecular mass determination of various forms of native and de-N-glycosylated human plasma-derived antithrombin by means of electrospray ionization ion trap mass spectrometry. Kleinova M, Buchacher A, Heger A, Pock K, Rizzi A, Allmaier G. J Mass Spectrom; 2004 Dec 15; 39(12):1429-36. PubMed ID: 15578742 [Abstract] [Full Text] [Related]
12. Identification of amino acid residues involved in the binding of Huperzine A to cholinesterases. Saxena A, Qian N, Kovach IM, Kozikowski AP, Pang YP, Vellom DC, Radić Z, Quinn D, Taylor P, Doctor BP. Protein Sci; 1994 Oct 15; 3(10):1770-8. PubMed ID: 7849595 [Abstract] [Full Text] [Related]
14. Structure, stability, and chaperone function of alphaA-crystallin: role of N-terminal region. Kundu M, Sen PC, Das KP. Biopolymers; 2007 Jun 15; 86(3):177-92. PubMed ID: 17345631 [Abstract] [Full Text] [Related]
15. Identification of endogenous phosphorylation sites of bovine medium and low molecular weight neurofilament proteins by tandem mass spectrometry. Trimpin S, Mixon AE, Stapels MD, Kim MY, Spencer PS, Deinzer ML. Biochemistry; 2004 Feb 24; 43(7):2091-105. PubMed ID: 14967049 [Abstract] [Full Text] [Related]
18. Structure of glycan moieties responsible for the extended circulatory life time of fetal bovine serum acetylcholinesterase and equine serum butyrylcholinesterase. Saxena A, Raveh L, Ashani Y, Doctor BP. Biochemistry; 1997 Jun 17; 36(24):7481-9. PubMed ID: 9200697 [Abstract] [Full Text] [Related]
20. Probing alpha-crystallin structure using chemical cross-linkers and mass spectrometry. Peterson JJ, Young MM, Takemoto LJ. Mol Vis; 2004 Nov 16; 10():857-66. PubMed ID: 15570221 [Abstract] [Full Text] [Related] Page: [Next] [New Search]