These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


446 related items for PubMed ID: 1469161

  • 1. An experimental randomized study of five different ventilatory modes in a piglet model of severe respiratory distress.
    Lichtwarck-Aschoff M, Nielsen JB, Sjöstrand UH, Edgren EL.
    Intensive Care Med; 1992; 18(6):339-47. PubMed ID: 1469161
    [Abstract] [Full Text] [Related]

  • 2. An experimental randomized study of six different ventilatory modes in a piglet model with normal lungs.
    Nielsen JB, Sjöstrand UH, Henneberg SW.
    Intensive Care Med; 1991; 17(3):169-74. PubMed ID: 2071765
    [Abstract] [Full Text] [Related]

  • 3. Different ventilatory approaches to keep the lung open.
    Sjöstrand UH, Lichtwarck-Aschoff M, Nielsen JB, Markström A, Larsson A, Svensson BA, Wegenius GA, Nordgren KA.
    Intensive Care Med; 1995 Apr; 21(4):310-8. PubMed ID: 7650253
    [Abstract] [Full Text] [Related]

  • 4. An experimental study of different ventilatory modes in piglets in severe respiratory distress induced by surfactant depletion.
    Nielsen JB, Sjöstrand UH, Edgren EL, Lichtwarck-Aschoff M, Svensson BA.
    Intensive Care Med; 1991 Apr; 17(4):225-33. PubMed ID: 1744308
    [Abstract] [Full Text] [Related]

  • 5. Reduced CO2-elimination during combined high-frequency ventilation compared to conventional pressure-controlled ventilation in surfactant-deficient piglets.
    Lichtwarck-Aschoff M, Zimmermann GJ, Erhardt W.
    Acta Anaesthesiol Scand; 1998 Mar; 42(3):335-42. PubMed ID: 9542562
    [Abstract] [Full Text] [Related]

  • 6. Effects of inverse ratio ventilation versus positive end-expiratory pressure on gas exchange and gastric intramucosal PCO(2) and pH under constant mean airway pressure in acute respiratory distress syndrome.
    Huang CC, Shih MJ, Tsai YH, Chang YC, Tsao TC, Hsu KH.
    Anesthesiology; 2001 Nov; 95(5):1182-8. PubMed ID: 11684988
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Volume-controlled ventilation and pressure-controlled inverse ratio ventilation: a comparison of their effects in ARDS patients.
    Mancebo J, Vallverdú I, Bak E, Domínguez G, Subirana M, Benito S, Net A.
    Monaldi Arch Chest Dis; 1994 Jun; 49(3):201-7. PubMed ID: 8087114
    [Abstract] [Full Text] [Related]

  • 9. Prolonged partial liquid ventilation using conventional and high-frequency ventilatory techniques: gas exchange and lung pathology in an animal model of respiratory distress syndrome.
    Smith KM, Mrozek JD, Simonton SC, Bing DR, Meyers PA, Connett JE, Mammel MC.
    Crit Care Med; 1997 Nov; 25(11):1888-97. PubMed ID: 9366775
    [Abstract] [Full Text] [Related]

  • 10. [Cardiopulmonary effects of CPPV (continuous positive pressure ventilation) and IRV (inverse ratio ventilation) in experimental myocardial ischemia].
    Hachenberg T, Meyer J, Sielenkämper A, Kraft W, Vogt B, Breithardt G, Lawin P.
    Anaesthesist; 1993 Apr; 42(4):210-20. PubMed ID: 8488992
    [Abstract] [Full Text] [Related]

  • 11. Respiratory and haemodynamic effects of conventional volume controlled PEEP ventilation, pressure regulated volume controlled ventilation and low frequency positive pressure ventilation with extracorporeal carbon dioxide removal in pigs with acute ARDS.
    Kesecioglu J, Telci L, Esen F, Akpir K, Tütüncü AS, Denkel T, Erdmann W, Lachmann B.
    Acta Anaesthesiol Scand; 1994 Nov; 38(8):879-84. PubMed ID: 7887114
    [Abstract] [Full Text] [Related]

  • 12. Oxygenation remains unaffected by increased inspiration-to-expiration ratio but impairs hemodynamics in surfactant-depleted piglets.
    Lichtwarck-Aschoff M, Markström AM, Hedlund AJ, Nielsen JB, Nordgren KA, Sjöstrand UH.
    Intensive Care Med; 1996 Apr; 22(4):329-35. PubMed ID: 8708171
    [Abstract] [Full Text] [Related]

  • 13. The effect of positive end-expiratory pressure during partial liquid ventilation in acute lung injury in piglets.
    Zobel G, Rödl S, Urlesberger B, Dacar D, Trafojer U, Trantina A.
    Crit Care Med; 1999 Sep; 27(9):1934-9. PubMed ID: 10507621
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Cardiopulmonary effects of positive pressure ventilation during acute lung injury.
    Romand JA, Shi W, Pinsky MR.
    Chest; 1995 Oct; 108(4):1041-8. PubMed ID: 7555117
    [Abstract] [Full Text] [Related]

  • 16. A functional and morphologic analysis of pressure-controlled inverse ratio ventilation in oleic acid-induced lung injury.
    Ludwigs U, Klingstedt C, Baehrendtz S, Wegenius G, Hedenstierna G.
    Chest; 1994 Sep; 106(3):925-31. PubMed ID: 8082379
    [Abstract] [Full Text] [Related]

  • 17. Long-term effects of two different ventilatory modes on oxygenation in acute lung injury. Comparison of airway pressure release ventilation and volume-controlled inverse ratio ventilation.
    Sydow M, Burchardi H, Ephraim E, Zielmann S, Crozier TA.
    Am J Respir Crit Care Med; 1994 Jun; 149(6):1550-6. PubMed ID: 8004312
    [Abstract] [Full Text] [Related]

  • 18. [Effect of different transpulmonary pressures guided mechanical ventilation on respiratory and hemodynamics of patients with ARDS: a prospective randomized controlled trial].
    Li J, Luo Z, Li X, Huang Z, Han J, Li Z, Zhou Z, Chen H.
    Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2017 Jan; 29(1):39-44. PubMed ID: 28459402
    [Abstract] [Full Text] [Related]

  • 19. Pulmonary epithelial permeability and gas exchange: a comparison of inverse ratio ventilation and conventional mechanical ventilation in oleic acid-induced lung injury in rabbits.
    Ludwigs U, Philip A.
    Chest; 1998 Feb; 113(2):459-66. PubMed ID: 9498967
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 23.