These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
164 related items for PubMed ID: 14695277
21. Velocities of unloaded muscle filaments are not limited by drag forces imposed by myosin cross-bridges. Brizendine RK, Alcala DB, Carter MS, Haldeman BD, Facemyer KC, Baker JE, Cremo CR. Proc Natl Acad Sci U S A; 2015 Sep 08; 112(36):11235-40. PubMed ID: 26294254 [Abstract] [Full Text] [Related]
22. Stepwise length changes in single invertebrate thick filaments. Nagornyak EM, Blyakhman FA, Pollack GH. Biophys J; 2005 Nov 08; 89(5):3269-76. PubMed ID: 16113114 [Abstract] [Full Text] [Related]
23. Slip sliding away: load-dependence of velocity generated by skeletal muscle myosin molecules in the laser trap. Debold EP, Patlak JB, Warshaw DM. Biophys J; 2005 Nov 08; 89(5):L34-6. PubMed ID: 16169988 [Abstract] [Full Text] [Related]
24. Strong binding of myosin heads stretches and twists the actin helix. Tsaturyan AK, Koubassova N, Ferenczi MA, Narayanan T, Roessle M, Bershitsky SY. Biophys J; 2005 Mar 08; 88(3):1902-10. PubMed ID: 15596509 [Abstract] [Full Text] [Related]
25. Fifty years of contractility research post sliding filament hypothesis. Sellers JR. J Muscle Res Cell Motil; 2004 Mar 08; 25(6):475-82. PubMed ID: 15630612 [No Abstract] [Full Text] [Related]
26. Myosin head configuration in relaxed insect flight muscle: x-ray modeled resting cross-bridges in a pre-powerstroke state are poised for actin binding. AL-Khayat HA, Hudson L, Reedy MK, Irving TC, Squire JM. Biophys J; 2003 Aug 08; 85(2):1063-79. PubMed ID: 12885653 [Abstract] [Full Text] [Related]
28. Actin structure-dependent stepping of myosin 5a and 10 during processive movement. Bao J, Huck D, Gunther LK, Sellers JR, Sakamoto T. PLoS One; 2013 Aug 08; 8(9):e74936. PubMed ID: 24069366 [Abstract] [Full Text] [Related]
29. Velocity of myosin-based actin sliding depends on attachment and detachment kinetics and reaches a maximum when myosin-binding sites on actin saturate. Stewart TJ, Murthy V, Dugan SP, Baker JE. J Biol Chem; 2021 Nov 08; 297(5):101178. PubMed ID: 34508779 [Abstract] [Full Text] [Related]
30. Simulation of F-actin filaments of several microns. Ming D, Kong Y, Wu Y, Ma J. Biophys J; 2003 Jul 08; 85(1):27-35. PubMed ID: 12829461 [Abstract] [Full Text] [Related]
31. Study of regulatory effect of tropomyosin on actin-myosin interaction in skeletal muscle by in vitro motility assay. Kopylova GV, Shchepkin DV, Nikitina LV. Biochemistry (Mosc); 2013 Mar 08; 78(3):260-6. PubMed ID: 23586719 [Abstract] [Full Text] [Related]
33. Acceleration of the sliding movement of actin filaments with the use of a non-motile mutant myosin in in vitro motility assays driven by skeletal muscle heavy meromyosin. Iwase K, Tanaka M, Hirose K, Uyeda TQP, Honda H. PLoS One; 2017 Apr 08; 12(7):e0181171. PubMed ID: 28742155 [Abstract] [Full Text] [Related]
34. Onset of the sliding movement of an actin filament on myosin molecules: from isotropic to anisotropic fluctuations. Hatori K, Honda H, Shimada K, Matsuno K. Biophys Chem; 1999 Nov 15; 82(1):29-33. PubMed ID: 10584294 [Abstract] [Full Text] [Related]
35. Alignment of actin filament streams driven by myosin motors in crowded environments. Iwase T, Sasaki Y, Hatori K. Biochim Biophys Acta Gen Subj; 2017 Nov 15; 1861(11 Pt A):2717-2725. PubMed ID: 28754385 [Abstract] [Full Text] [Related]
36. Force-velocity relation of sliding of skeletal muscle myosin, arranged on a paramyosin filament, on actin cables. Tameyasu T, Akimoto T, Hirohata Y, Shirakawa I, Yamamoto N, Kosuge S, Sugi H. Jpn J Physiol; 1998 Apr 15; 48(2):115-21. PubMed ID: 9639546 [Abstract] [Full Text] [Related]
37. Hyper-mobile water is induced around actin filaments. Kabir SR, Yokoyama K, Mihashi K, Kodama T, Suzuki M. Biophys J; 2003 Nov 15; 85(5):3154-61. PubMed ID: 14581215 [Abstract] [Full Text] [Related]
38. Caldesmon inhibits the actin-myosin interaction by changing its spatial orientation and mobility during the ATPase activity cycle. Kulikova N, Pronina OE, Dabrowska R, Borovikov YS. Biochem Biophys Res Commun; 2007 Jun 01; 357(2):461-6. PubMed ID: 17428444 [Abstract] [Full Text] [Related]
39. The kinetics underlying the velocity of smooth muscle myosin filament sliding on actin filaments in vitro. Haldeman BD, Brizendine RK, Facemyer KC, Baker JE, Cremo CR. J Biol Chem; 2014 Jul 25; 289(30):21055-70. PubMed ID: 24907276 [Abstract] [Full Text] [Related]
40. Fluctuation correlation in the sliding movement generated by protein motors in vitro. Tawada K, Toyoda M, Imafuku Y, Yamada A. Adv Exp Med Biol; 1998 Jul 25; 453():47-51. PubMed ID: 9889813 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]