These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


271 related items for PubMed ID: 14695516

  • 1. A (4R)- or a (4S)-fluoroproline residue in position Xaa of the (Xaa-Yaa-Gly) collagen repeat severely affects triple-helix formation.
    Barth D, Milbradt AG, Renner C, Moroder L.
    Chembiochem; 2004 Jan 03; 5(1):79-86. PubMed ID: 14695516
    [Abstract] [Full Text] [Related]

  • 2. Stereoelectronic effects on collagen stability: the dichotomy of 4-fluoroproline diastereomers.
    Hodges JA, Raines RT.
    J Am Chem Soc; 2003 Aug 06; 125(31):9262-3. PubMed ID: 12889933
    [Abstract] [Full Text] [Related]

  • 3. The crystal structure of the collagen-like polypeptide (glycyl-4(R)-hydroxyprolyl-4(R)-hydroxyprolyl)9 at 1.55 A resolution shows up-puckering of the proline ring in the Xaa position.
    Schumacher M, Mizuno K, Bächinger HP.
    J Biol Chem; 2005 May 27; 280(21):20397-403. PubMed ID: 15784619
    [Abstract] [Full Text] [Related]

  • 4. Stabilization of triple-helical structures of collagen peptides containing a Hyp-Thr-Gly, Hyp-Val-Gly, or Hyp-Ser-Gly sequence.
    Okuyama K, Miyama K, Morimoto T, Masakiyo K, Mizuno K, Bächinger HP.
    Biopolymers; 2011 Sep 27; 95(9):628-40. PubMed ID: 21442606
    [Abstract] [Full Text] [Related]

  • 5. Stereoelectronic and steric effects in the collagen triple helix: toward a code for strand association.
    Hodges JA, Raines RT.
    J Am Chem Soc; 2005 Nov 16; 127(45):15923-32. PubMed ID: 16277536
    [Abstract] [Full Text] [Related]

  • 6. Hydroxyproline Ring Pucker Causes Frustration of Helix Parameters in the Collagen Triple Helix.
    Chow WY, Bihan D, Forman CJ, Slatter DA, Reid DG, Wales DJ, Farndale RW, Duer MJ.
    Sci Rep; 2015 Jul 29; 5():12556. PubMed ID: 26220399
    [Abstract] [Full Text] [Related]

  • 7. The crystal structure of a collagen-like polypeptide with 3(S)-hydroxyproline residues in the Xaa position forms a standard 7/2 collagen triple helix.
    Schumacher MA, Mizuno K, Bächinger HP.
    J Biol Chem; 2006 Sep 15; 281(37):27566-74. PubMed ID: 16798737
    [Abstract] [Full Text] [Related]

  • 8. A stereoelectronic effect on turn formation due to proline substitution in elastin-mimetic polypeptides.
    Kim W, McMillan RA, Snyder JP, Conticello VP.
    J Am Chem Soc; 2005 Dec 28; 127(51):18121-32. PubMed ID: 16366565
    [Abstract] [Full Text] [Related]

  • 9. Hydroxylation-induced stabilization of the collagen triple helix. Further characterization of peptides with 4(R)-hydroxyproline in the Xaa position.
    Mizuno K, Hayashi T, Bächinger HP.
    J Biol Chem; 2003 Aug 22; 278(34):32373-9. PubMed ID: 12807876
    [Abstract] [Full Text] [Related]

  • 10. Modulating the folding stability and ligand binding affinity of Pin1 WW domain by proline ring puckering.
    Tang HC, Lin YJ, Horng JC.
    Proteins; 2014 Jan 22; 82(1):67-76. PubMed ID: 23839950
    [Abstract] [Full Text] [Related]

  • 11. Effect of sterically demanding substituents on the conformational stability of the collagen triple helix.
    Erdmann RS, Wennemers H.
    J Am Chem Soc; 2012 Oct 17; 134(41):17117-24. PubMed ID: 22992124
    [Abstract] [Full Text] [Related]

  • 12. Effect of 3-hydroxyproline residues on collagen stability.
    Jenkins CL, Bretscher LE, Guzei IA, Raines RT.
    J Am Chem Soc; 2003 May 28; 125(21):6422-7. PubMed ID: 12785781
    [Abstract] [Full Text] [Related]

  • 13. High-resolution structures of collagen-like peptides [(Pro-Pro-Gly)4-Xaa-Yaa-Gly-(Pro-Pro-Gly)4]: implications for triple-helix hydration and Hyp(X) puckering.
    Okuyama K, Hongo C, Wu G, Mizuno K, Noguchi K, Ebisuzaki S, Tanaka Y, Nishino N, Bächinger HP.
    Biopolymers; 2009 May 28; 91(5):361-72. PubMed ID: 19137577
    [Abstract] [Full Text] [Related]

  • 14. Collagen stability: insights from NMR spectroscopic and hybrid density functional computational investigations of the effect of electronegative substituents on prolyl ring conformations.
    DeRider ML, Wilkens SJ, Waddell MJ, Bretscher LE, Weinhold F, Raines RT, Markley JL.
    J Am Chem Soc; 2002 Mar 20; 124(11):2497-505. PubMed ID: 11890798
    [Abstract] [Full Text] [Related]

  • 15. Thermodynamic consequences of incorporating 4-substituted proline derivatives into a small helical protein.
    Zheng TY, Lin YJ, Horng JC.
    Biochemistry; 2010 May 18; 49(19):4255-63. PubMed ID: 20405858
    [Abstract] [Full Text] [Related]

  • 16. Sequence dependence of the folding of collagen-like peptides. Single amino acids affect the rate of triple-helix nucleation.
    Ackerman MS, Bhate M, Shenoy N, Beck K, Ramshaw JA, Brodsky B.
    J Biol Chem; 1999 Mar 19; 274(12):7668-73. PubMed ID: 10075654
    [Abstract] [Full Text] [Related]

  • 17. The peptides acetyl-(Gly-3(S)Hyp-4(R)Hyp)10-NH2 and acetyl-(Gly-Pro-3(S)Hyp)10-NH2 do not form a collagen triple helix.
    Mizuno K, Hayashi T, Peyton DH, Bachinger HP.
    J Biol Chem; 2004 Jan 02; 279(1):282-7. PubMed ID: 14576161
    [Abstract] [Full Text] [Related]

  • 18. Triple-helix propensity of hydroxyproline and fluoroproline: comparison of host-guest and repeating tripeptide collagen models.
    Persikov AV, Ramshaw JA, Kirkpatrick A, Brodsky B.
    J Am Chem Soc; 2003 Sep 24; 125(38):11500-1. PubMed ID: 13129344
    [Abstract] [Full Text] [Related]

  • 19. The triple helical structure and stability of collagen model peptide with 4(S)-hydroxyprolyl-Pro-Gly units.
    Motooka D, Kawahara K, Nakamura S, Doi M, Nishi Y, Nishiuchi Y, Kang YK, Nakazawa T, Uchiyama S, Yoshida T, Ohkubo T, Kobayashi Y.
    Biopolymers; 2012 Sep 24; 98(2):111-21. PubMed ID: 22020801
    [Abstract] [Full Text] [Related]

  • 20. 4-chloroprolines: synthesis, conformational analysis, and effect on the collagen triple helix.
    Shoulders MD, Guzei IA, Raines RT.
    Biopolymers; 2008 May 24; 89(5):443-54. PubMed ID: 17937398
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 14.