These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


549 related items for PubMed ID: 14701924

  • 1. Simultaneous measurement of stomatal conductance, non-photochemical quenching, and photochemical yield of photosystem II in intact leaves by thermal and chlorophyll fluorescence imaging.
    Omasa K, Takayama K.
    Plant Cell Physiol; 2003 Dec; 44(12):1290-300. PubMed ID: 14701924
    [Abstract] [Full Text] [Related]

  • 2. Enhancement of cyclic electron flow around PSI at high light and its contribution to the induction of non-photochemical quenching of chl fluorescence in intact leaves of tobacco plants.
    Miyake C, Shinzaki Y, Miyata M, Tomizawa K.
    Plant Cell Physiol; 2004 Oct; 45(10):1426-33. PubMed ID: 15564526
    [Abstract] [Full Text] [Related]

  • 3. Primary sites of ozone-induced perturbations of photosynthesis in leaves: identification and characterization in Phaseolus vulgaris using high resolution chlorophyll fluorescence imaging.
    Leipner J, Oxborough K, Baker NR.
    J Exp Bot; 2001 Aug; 52(361):1689-96. PubMed ID: 11479334
    [Abstract] [Full Text] [Related]

  • 4. Root signals and stomatal closure in relation to photosynthesis, chlorophyll a fluorescence and adventitious rooting of flooded tomato plants.
    Else MA, Janowiak F, Atkinson CJ, Jackson MB.
    Ann Bot; 2009 Jan; 103(2):313-23. PubMed ID: 19001430
    [Abstract] [Full Text] [Related]

  • 5. Impaired leaf CO2 diffusion mediates Cd-induced inhibition of photosynthesis in the Zn/Cd hyperaccumulator Picris divaricata.
    Tang L, Ying RR, Jiang D, Zeng XW, Morel JL, Tang YT, Qiu RL.
    Plant Physiol Biochem; 2013 Dec; 73():70-6. PubMed ID: 24077231
    [Abstract] [Full Text] [Related]

  • 6. [Effects of exogenous abscisic acid (ABA) on the photosynthesis and chlorophyll fluorescence parameters of Tripterygium wilfordii seedlings exposed to low temperature].
    Huang Y, Lin ZY, Rong JD, Chen LG, Zheng YS.
    Ying Yong Sheng Tai Xue Bao; 2011 Dec; 22(12):3150-6. PubMed ID: 22384581
    [Abstract] [Full Text] [Related]

  • 7. [Effects of different water potentials on leaf gas exchange and chlorophyll fluorescence parameters of cucumber during post-flowering growth stage].
    Lin L, Tang Y, Zhang JT, Yan WL, Xiao JH, Ding C, Dong C, Ji ZS.
    Ying Yong Sheng Tai Xue Bao; 2015 Jul; 26(7):2030-40. PubMed ID: 26710629
    [Abstract] [Full Text] [Related]

  • 8. Moderate water stress causes different stomatal and non-stomatal changes in the photosynthetic functioning of Phaseolus vulgaris L. genotypes.
    Ramalho JC, Zlatev ZS, Leitão AE, Pais IP, Fortunato AS, Lidon FC.
    Plant Biol (Stuttg); 2014 Jan; 16(1):133-46. PubMed ID: 23647987
    [Abstract] [Full Text] [Related]

  • 9. Why leaves turn red in autumn. The role of anthocyanins in senescing leaves of red-osier dogwood.
    Feild TS, Lee DW, Holbrook NM.
    Plant Physiol; 2001 Oct; 127(2):566-74. PubMed ID: 11598230
    [Abstract] [Full Text] [Related]

  • 10. Diurnal variation of photosynthesis and photoinhibition in tea: effects of irradiance and nitrogen supply during growth in the field.
    Mohotti AJ, Lawlor DW.
    J Exp Bot; 2002 Feb; 53(367):313-22. PubMed ID: 11807135
    [Abstract] [Full Text] [Related]

  • 11. Sensitivity of photosynthetic electron transport to photoinhibition in a temperate deciduous forest canopy: Photosystem II center openness, non-radiative energy dissipation and excess irradiance under field conditions.
    Niinemets U, Kull O.
    Tree Physiol; 2001 Aug; 21(12-13):899-914. PubMed ID: 11498337
    [Abstract] [Full Text] [Related]

  • 12. Nerium oleander indirect leaf photosynthesis and light harvesting reductions after clipping injury or Spodoptera eridania herbivory: high sensitivity to injury.
    Delaney KJ.
    Plant Sci; 2012 Apr; 185-186():218-26. PubMed ID: 22325884
    [Abstract] [Full Text] [Related]

  • 13. Response of the photosynthetic apparatus of cotton (Gossypium hirsutum) to the onset of drought stress under field conditions studied by gas-exchange analysis and chlorophyll fluorescence imaging.
    Massacci A, Nabiev SM, Pietrosanti L, Nematov SK, Chernikova TN, Thor K, Leipner J.
    Plant Physiol Biochem; 2008 Feb; 46(2):189-95. PubMed ID: 18053735
    [Abstract] [Full Text] [Related]

  • 14. A coupled model of photosynthesis, stomatal conductance and transpiration for a rose leaf (Rosa hybrida L.).
    Kim SH, Lieth JH.
    Ann Bot; 2003 Jun; 91(7):771-81. PubMed ID: 12730065
    [Abstract] [Full Text] [Related]

  • 15. A few molecules of zeaxanthin per reaction centre of photosystem II permit effective thermal dissipation of light energy in photosystem II of a poikilohydric moss.
    Bukhov NG, Kopecky J, Pfündel EE, Klughammer C, Heber U.
    Planta; 2001 Apr; 212(5-6):739-48. PubMed ID: 11346947
    [Abstract] [Full Text] [Related]

  • 16. Differences in the stimulation of cyclic electron flow in two tropical ferns under water stress are related to leaf anatomy.
    Wang JH, Li SC, Sun M, Huang W, Cao H, Xu F, Zhou NN, Zhang SB.
    Physiol Plant; 2013 Mar; 147(3):283-95. PubMed ID: 22626455
    [Abstract] [Full Text] [Related]

  • 17. High resolution imaging of photosynthetic activities of tissues, cells and chloroplasts in leaves.
    Baker NR, Oxborough K, Lawson T, Morison JI.
    J Exp Bot; 2001 Apr; 52(356):615-21. PubMed ID: 11373309
    [Abstract] [Full Text] [Related]

  • 18. CO2 response of cyclic electron flow around PSI (CEF-PSI) in tobacco leaves--relative electron fluxes through PSI and PSII determine the magnitude of non-photochemical quenching (NPQ) of Chl fluorescence.
    Miyake C, Miyata M, Shinzaki Y, Tomizawa K.
    Plant Cell Physiol; 2005 Apr; 46(4):629-37. PubMed ID: 15701657
    [Abstract] [Full Text] [Related]

  • 19. Integrating transient heterogeneity of non-photochemical quenching in shade-grown heterobaric leaves of avocado (Persea americana L.): responses to CO2 concentration, stomatal occlusion, dehydration and relative humidity.
    Takayama K, King D, Robinson SA, Osmond B.
    Plant Cell Physiol; 2013 Nov; 54(11):1852-66. PubMed ID: 24078766
    [Abstract] [Full Text] [Related]

  • 20. Regulatory effects of silicon nanoparticles on the growth and photosynthesis of cotton seedlings under salt and low-temperature dual stress.
    Liang Y, Liu H, Fu Y, Li P, Li S, Gao Y.
    BMC Plant Biol; 2023 Oct 21; 23(1):504. PubMed ID: 37864143
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 28.