These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


238 related items for PubMed ID: 14702214

  • 1. Rod and cone signaling transmission in the retina of zebrafish: an erg study.
    Ren JQ, Li L.
    Int J Neurosci; 2004 Feb; 114(2):259-70. PubMed ID: 14702214
    [Abstract] [Full Text] [Related]

  • 2. Retinal bipolar cell input mechanisms in giant danio. II. Patch-clamp analysis of on bipolar cells.
    Wong KY, Cohen ED, Dowling JE.
    J Neurophysiol; 2005 Jan; 93(1):94-107. PubMed ID: 15229214
    [Abstract] [Full Text] [Related]

  • 3. A circadian clock regulates the process of ERG b- and d-wave dominance transition in dark-adapted zebrafish.
    Ren JQ, Li L.
    Vision Res; 2004 Jan; 44(18):2147-52. PubMed ID: 15183681
    [Abstract] [Full Text] [Related]

  • 4. Unique functional properties of the APB sensitive and insensitive rod pathways signaling light decrements in mouse retinal ganglion cells.
    Wang GY.
    Vis Neurosci; 2006 Jan; 23(1):127-35. PubMed ID: 16597356
    [Abstract] [Full Text] [Related]

  • 5. Retinal bipolar cell input mechanisms in giant danio. I. Electroretinographic analysis.
    Wong KY, Adolph AR, Dowling JE.
    J Neurophysiol; 2005 Jan; 93(1):84-93. PubMed ID: 15229213
    [Abstract] [Full Text] [Related]

  • 6. Evidence that L-AP5 and D,L-AP4 can preferentially block cone signals in the rat retina.
    Green DG, Kapousta-Bruneau NV.
    Vis Neurosci; 2007 Jan; 24(1):9-15. PubMed ID: 17430605
    [Abstract] [Full Text] [Related]

  • 7. Intrinsic signal imaging in macaque retina reveals different types of flash-induced light reflectance changes of different origins.
    Hanazono G, Tsunoda K, Shinoda K, Tsubota K, Miyake Y, Tanifuji M.
    Invest Ophthalmol Vis Sci; 2007 Jun; 48(6):2903-12. PubMed ID: 17525227
    [Abstract] [Full Text] [Related]

  • 8. The d-wave in fish and the state of light adaptation.
    Gacić Z, Damjanović I, Bajić A, Milosević M, Mićković B, Nikcević M, Andjus PR.
    Gen Physiol Biophys; 2007 Dec; 26(4):260-7. PubMed ID: 18281743
    [Abstract] [Full Text] [Related]

  • 9. Temporal analysis of electroretinographic responses in fishes with rod-dominated and mixed rod-cone retina.
    Milosević M, Visnjić-Jeftić Z, Damjanović I, Nikcević M, Andjus P, Gacić Z.
    Gen Physiol Biophys; 2009 Sep; 28(3):276-82. PubMed ID: 20037193
    [Abstract] [Full Text] [Related]

  • 10. ERG OFF response in frog retina: light adaptation and effect of 2-amino-4-phosphonobutyrate.
    Popova E, Kupenova P, Vitanova L, Mitova L.
    Acta Physiol Scand; 1995 Jul; 154(3):377-86. PubMed ID: 7572235
    [Abstract] [Full Text] [Related]

  • 11. Synaptic circuitry mediating light-evoked signals in dark-adapted mouse retina.
    Wu SM, Gao F, Pang JJ.
    Vision Res; 2004 Dec; 44(28):3277-88. PubMed ID: 15535995
    [Abstract] [Full Text] [Related]

  • 12. Wavelength and intensity dependence of retinal evoked responses using in vivo optic nerve recording.
    Finn WE, LoPresti PG.
    IEEE Trans Neural Syst Rehabil Eng; 2003 Dec; 11(4):372-6. PubMed ID: 14960112
    [Abstract] [Full Text] [Related]

  • 13. Contribution of proximal retinal neurons to b- and d-waves of frog electroretinogram under different conditions of light adaptation.
    Popova E, Kupenova P.
    Vision Res; 2009 Jul; 49(15):2001-10. PubMed ID: 19463849
    [Abstract] [Full Text] [Related]

  • 14. Mapping cone- and rod-induced retinal responsiveness in macaque retina by optical imaging.
    Tsunoda K, Oguchi Y, Hanazono G, Tanifuji M.
    Invest Ophthalmol Vis Sci; 2004 Oct; 45(10):3820-6. PubMed ID: 15452094
    [Abstract] [Full Text] [Related]

  • 15. Investigations of photoreceptor synaptic transmission and light adaptation in the zebrafish visual mutant nrc.
    Van Epps HA, Yim CM, Hurley JB, Brockerhoff SE.
    Invest Ophthalmol Vis Sci; 2001 Mar; 42(3):868-74. PubMed ID: 11222552
    [Abstract] [Full Text] [Related]

  • 16. Functional changes in rod and cone pathways after photoreceptor loss in light-damaged rats.
    Takahashi T, Machida S, Masuda T, Mukaida Y, Tazawa Y.
    Curr Eye Res; 2005 Aug; 30(8):703-13. PubMed ID: 16109651
    [Abstract] [Full Text] [Related]

  • 17. The status of cones in the rhodopsin mutant P23H-3 retina: light-regulated damage and repair in parallel with rods.
    Chrysostomou V, Stone J, Stowe S, Barnett NL, Valter K.
    Invest Ophthalmol Vis Sci; 2008 Mar; 49(3):1116-25. PubMed ID: 18326739
    [Abstract] [Full Text] [Related]

  • 18. Cone-rod dependence in the rat retina: variation with the rate of rod damage.
    Chrysostomou V, Valter K, Stone J.
    Invest Ophthalmol Vis Sci; 2009 Jun; 50(6):3017-23. PubMed ID: 19182251
    [Abstract] [Full Text] [Related]

  • 19. A proximal retinal component in the primate photopic ERG a-wave.
    Bush RA, Sieving PA.
    Invest Ophthalmol Vis Sci; 1994 Feb; 35(2):635-45. PubMed ID: 8113014
    [Abstract] [Full Text] [Related]

  • 20. Light signaling in scotopic conditions in the rabbit, mouse and rat retina: a physiological and anatomical study.
    Protti DA, Flores-Herr N, Li W, Massey SC, Wässle H.
    J Neurophysiol; 2005 Jun; 93(6):3479-88. PubMed ID: 15601738
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.