These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


335 related items for PubMed ID: 14704426

  • 21. Function of the extrinsic hindlimb muscles in trotting dogs.
    Schilling N, Fischbein T, Yang EP, Carrier DR.
    J Exp Biol; 2009 Apr; 212(Pt 7):1036-52. PubMed ID: 19282501
    [Abstract] [Full Text] [Related]

  • 22. Function of a large biarticular hip and knee extensor during walking and running in guinea fowl (Numida meleagris).
    Carr JA, Ellerby DJ, Marsh RL.
    J Exp Biol; 2011 Oct 15; 214(Pt 20):3405-13. PubMed ID: 21957104
    [Abstract] [Full Text] [Related]

  • 23. Task specific adaptations in rat locomotion: runway versus horizontal ladder.
    Bolton DA, Tse AD, Ballermann M, Misiaszek JE, Fouad K.
    Behav Brain Res; 2006 Apr 03; 168(2):272-9. PubMed ID: 16406145
    [Abstract] [Full Text] [Related]

  • 24. Hindlimb function in the alligator: integrating movements, motor patterns, ground reaction forces and bone strain of terrestrial locomotion.
    Reilly SM, Willey JS, Biknevicius AR, Blob RW.
    J Exp Biol; 2005 Mar 03; 208(Pt 6):993-1009. PubMed ID: 15767301
    [Abstract] [Full Text] [Related]

  • 25. Locomotor trade-offs in mice selectively bred for high voluntary wheel running.
    Dlugosz EM, Chappell MA, McGillivray DG, Syme DA, Garland T.
    J Exp Biol; 2009 Aug 03; 212(Pt 16):2612-8. PubMed ID: 19648406
    [Abstract] [Full Text] [Related]

  • 26. Averaged EMG profiles in jogging and running at different speeds.
    Gazendam MG, Hof AL.
    Gait Posture; 2007 Apr 03; 25(4):604-14. PubMed ID: 16887351
    [Abstract] [Full Text] [Related]

  • 27. Locomotor function of forelimb protractor and retractor muscles of dogs: evidence of strut-like behavior at the shoulder.
    Carrier DR, Deban SM, Fischbein T.
    J Exp Biol; 2008 Jan 03; 211(Pt 1):150-62. PubMed ID: 18083743
    [Abstract] [Full Text] [Related]

  • 28. Energetics of running: a new perspective.
    Kram R, Taylor CR.
    Nature; 1990 Jul 19; 346(6281):265-7. PubMed ID: 2374590
    [Abstract] [Full Text] [Related]

  • 29. Optimal speeds for walking and running, and walking on a moving walkway.
    Srinivasan M.
    Chaos; 2009 Jun 19; 19(2):026112. PubMed ID: 19566272
    [Abstract] [Full Text] [Related]

  • 30. Towards a general neural controller for quadrupedal locomotion.
    Maufroy C, Kimura H, Takase K.
    Neural Netw; 2008 May 19; 21(4):667-81. PubMed ID: 18490136
    [Abstract] [Full Text] [Related]

  • 31. The mechanisms for minimizing energy expenditure in human locomotion.
    Saibene F.
    Eur J Clin Nutr; 1990 May 19; 44 Suppl 1():65-71. PubMed ID: 2193805
    [Abstract] [Full Text] [Related]

  • 32. Mechanical efficiency of limb swing during walking and running in guinea fowl (Numida meleagris).
    Rubenson J, Marsh RL.
    J Appl Physiol (1985); 2009 May 19; 106(5):1618-30. PubMed ID: 19228989
    [Abstract] [Full Text] [Related]

  • 33. Predicting the energy cost of terrestrial locomotion: a test of the LiMb model in humans and quadrupeds.
    Pontzer H.
    J Exp Biol; 2007 Feb 19; 210(Pt 3):484-94. PubMed ID: 17234618
    [Abstract] [Full Text] [Related]

  • 34. Integration within and between muscles during terrestrial locomotion: effects of incline and speed.
    Higham TE, Biewener AA.
    J Exp Biol; 2008 Jul 19; 211(Pt 14):2303-16. PubMed ID: 18587125
    [Abstract] [Full Text] [Related]

  • 35. A 3D analysis of fore- and hindlimb motion during overground and ladder walking: comparison of control and unloaded rats.
    Canu MH, Garnier C.
    Exp Neurol; 2009 Jul 19; 218(1):98-108. PubMed ID: 19393236
    [Abstract] [Full Text] [Related]

  • 36. Mechanics and energetics of incline walking with robotic ankle exoskeletons.
    Sawicki GS, Ferris DP.
    J Exp Biol; 2009 Jan 19; 212(Pt 1):32-41. PubMed ID: 19088208
    [Abstract] [Full Text] [Related]

  • 37. Biomechanics of walking and running: center of mass movements to muscle action.
    Farley CT, Ferris DP.
    Exerc Sport Sci Rev; 1998 Jan 19; 26():253-85. PubMed ID: 9696992
    [No Abstract] [Full Text] [Related]

  • 38. Ankle plantar flexor force production is an important determinant of the preferred walk-to-run transition speed.
    Neptune RR, Sasaki K.
    J Exp Biol; 2005 Mar 19; 208(Pt 5):799-808. PubMed ID: 15755878
    [Abstract] [Full Text] [Related]

  • 39. A collisional model of the energetic cost of support work qualitatively explains leg sequencing in walking and galloping, pseudo-elastic leg behavior in running and the walk-to-run transition.
    Ruina A, Bertram JE, Srinivasan M.
    J Theor Biol; 2005 Nov 21; 237(2):170-92. PubMed ID: 15961114
    [Abstract] [Full Text] [Related]

  • 40. Gender differences in walking and running on level and inclined surfaces.
    Chumanov ES, Wall-Scheffler C, Heiderscheit BC.
    Clin Biomech (Bristol); 2008 Dec 21; 23(10):1260-8. PubMed ID: 18774631
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 17.