These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
213 related items for PubMed ID: 14705935
1. Mutational analysis provides molecular insight into the carbohydrate-binding region of calreticulin: pivotal roles of tyrosine-109 and aspartate-135 in carbohydrate recognition. Kapoor M, Ellgaard L, Gopalakrishnapai J, Schirra C, Gemma E, Oscarson S, Helenius A, Surolia A. Biochemistry; 2004 Jan 13; 43(1):97-106. PubMed ID: 14705935 [Abstract] [Full Text] [Related]
2. Isothermal titration calorimetric study defines the substrate binding residues of calreticulin. Gopalakrishnapai J, Gupta G, Karthikeyan T, Sinha S, Kandiah E, Gemma E, Oscarson S, Surolia A. Biochem Biophys Res Commun; 2006 Dec 08; 351(1):14-20. PubMed ID: 17049488 [Abstract] [Full Text] [Related]
3. Analyses of carbohydrate binding property of lectin-chaperone calreticulin. Tatami A, Hon YS, Matsuo I, Takatani M, Koshino H, Ito Y. Biochem Biophys Res Commun; 2007 Dec 14; 364(2):332-7. PubMed ID: 17950701 [Abstract] [Full Text] [Related]
4. Defining substrate interactions with calreticulin: an isothermal titration calorimetric study. Gupta G, Gemma E, Oscarson S, Surolia A. Glycoconj J; 2008 Nov 14; 25(8):797-802. PubMed ID: 18553166 [Abstract] [Full Text] [Related]
5. Structural basis for the energetics of jacalin-sugar interactions: promiscuity versus specificity. Arockia Jeyaprakash A, Jayashree G, Mahanta SK, Swaminathan CP, Sekar K, Surolia A, Vijayan M. J Mol Biol; 2005 Mar 18; 347(1):181-8. PubMed ID: 15733927 [Abstract] [Full Text] [Related]
6. Sugar-binding activity of the MRH domain in the ER alpha-glucosidase II beta subunit is important for efficient glucose trimming. Hu D, Kamiya Y, Totani K, Kamiya D, Kawasaki N, Yamaguchi D, Matsuo I, Matsumoto N, Ito Y, Kato K, Yamamoto K. Glycobiology; 2009 Oct 18; 19(10):1127-35. PubMed ID: 19625484 [Abstract] [Full Text] [Related]
7. Gentamicin binds to the lectin site of calreticulin and inhibits its chaperone activity. Horibe T, Matsui H, Tanaka M, Nagai H, Yamaguchi Y, Kato K, Kikuchi M. Biochem Biophys Res Commun; 2004 Oct 08; 323(1):281-7. PubMed ID: 15351734 [Abstract] [Full Text] [Related]
8. The interplay between calcium and the in vitro lectin and chaperone activities of calreticulin. Conte IL, Keith N, Gutiérrez-Gonzalez C, Parodi AJ, Caramelo JJ. Biochemistry; 2007 Apr 17; 46(15):4671-80. PubMed ID: 17385894 [Abstract] [Full Text] [Related]
9. Interactions of substrate with calreticulin, an endoplasmic reticulum chaperone. Kapoor M, Srinivas H, Kandiah E, Gemma E, Ellgaard L, Oscarson S, Helenius A, Surolia A. J Biol Chem; 2003 Feb 21; 278(8):6194-200. PubMed ID: 12464625 [Abstract] [Full Text] [Related]
10. Protein kinase C is involved in the regulation of several calreticulin posttranslational modifications. Cristina Castañeda-Patlán M, Razo-Paredes R, Carrisoza-Gaytán R, González-Mariscal L, Robles-Flores M. Int J Biochem Cell Biol; 2010 Jan 21; 42(1):120-31. PubMed ID: 19800981 [Abstract] [Full Text] [Related]
11. Delineation of the lectin site of the molecular chaperone calreticulin. Thomson SP, Williams DB. Cell Stress Chaperones; 2005 Jan 21; 10(3):242-51. PubMed ID: 16184769 [Abstract] [Full Text] [Related]
12. Identification by mutational analysis of amino acid residues essential in the chaperone function of calreticulin. Martin V, Groenendyk J, Steiner SS, Guo L, Dabrowska M, Parker JM, Müller-Esterl W, Opas M, Michalak M. J Biol Chem; 2006 Jan 27; 281(4):2338-46. PubMed ID: 16291754 [Abstract] [Full Text] [Related]
13. Structural basis for the carbohydrate specificities of artocarpin: variation in the length of a loop as a strategy for generating ligand specificity. Jeyaprakash AA, Srivastav A, Surolia A, Vijayan M. J Mol Biol; 2004 May 07; 338(4):757-70. PubMed ID: 15099743 [Abstract] [Full Text] [Related]
14. Design and synthesis of oligosaccharides that interfere with glycoprotein quality-control systems. Arai MA, Matsuo I, Hagihara S, Totani K, Maruyama J, Kitamoto K, Ito Y. Chembiochem; 2005 Dec 07; 6(12):2281-9. PubMed ID: 16283686 [Abstract] [Full Text] [Related]
15. Dissecting carbohydrate-Cyanovirin-N binding by structure-guided mutagenesis: functional implications for viral entry inhibition. Barrientos LG, Matei E, Lasala F, Delgado R, Gronenborn AM. Protein Eng Des Sel; 2006 Dec 07; 19(12):525-35. PubMed ID: 17012344 [Abstract] [Full Text] [Related]
16. Mutational analysis of a sequence-specific ssDNA binding lupus autoantibody. Cleary J, Glick GD. Biochemistry; 2003 Jan 14; 42(1):30-41. PubMed ID: 12515537 [Abstract] [Full Text] [Related]
17. Cytochrome b5 reductase: role of the si-face residues, proline 92 and tyrosine 93, in structure and catalysis. Marohnic CC, Crowley LJ, Davis CA, Smith ET, Barber MJ. Biochemistry; 2005 Feb 22; 44(7):2449-61. PubMed ID: 15709757 [Abstract] [Full Text] [Related]
18. Variable contributions of tyrosine residues to the structural and spectroscopic properties of the factor for inversion stimulation. Boswell S, Mathew J, Beach M, Osuna R, Colón W. Biochemistry; 2004 Mar 16; 43(10):2964-77. PubMed ID: 15005633 [Abstract] [Full Text] [Related]
19. Mutational analysis of the complex of human RNase inhibitor and human eosinophil-derived neurotoxin (RNase 2). Teufel DP, Kao RY, Acharya KR, Shapiro R. Biochemistry; 2003 Feb 18; 42(6):1451-9. PubMed ID: 12578357 [Abstract] [Full Text] [Related]
20. Effects on sialic acid recognition of amino acid mutations in the carbohydrate-binding cleft of the rotavirus spike protein. Kraschnefski MJ, Bugarcic A, Fleming FE, Yu X, von Itzstein M, Coulson BS, Blanchard H. Glycobiology; 2009 Mar 18; 19(3):194-200. PubMed ID: 18974199 [Abstract] [Full Text] [Related] Page: [Next] [New Search]