These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
211 related items for PubMed ID: 14709394
1. A low noise multichannel integrated circuit for recording neuronal signals using microelectrode arrays. Dabrowski W, Grybos P, Litke AM. Biosens Bioelectron; 2004 Feb 15; 19(7):749-61. PubMed ID: 14709394 [Abstract] [Full Text] [Related]
2. Design and measurements of 64-channel ASIC for neural signal recording. Kmon P, Zoladz M, Grybos P, Szczygiel R. Annu Int Conf IEEE Eng Med Biol Soc; 2009 Feb 15; 2009():528-31. PubMed ID: 19964226 [Abstract] [Full Text] [Related]
3. A 64-channel ASIC for in-vitro simultaneous recording and stimulation of neurons using microelectrode arrays. Billoint O, Rostaing JP, Charvet G, Yvert B. Annu Int Conf IEEE Eng Med Biol Soc; 2007 Feb 15; 2007():6070-3. PubMed ID: 18003399 [Abstract] [Full Text] [Related]
8. An ultra low-power CMOS automatic action potential detector. Gosselin B, Sawan M. IEEE Trans Neural Syst Rehabil Eng; 2009 Aug 15; 17(4):346-53. PubMed ID: 19366647 [Abstract] [Full Text] [Related]
9. CMOS microelectrode array for the monitoring of electrogenic cells. Heer F, Franks W, Blau A, Taschini S, Ziegler C, Hierlemann A, Baltes H. Biosens Bioelectron; 2004 Sep 15; 20(2):358-66. PubMed ID: 15308242 [Abstract] [Full Text] [Related]
10. A low-noise, modular, and versatile analog front-end intended for processing in vitro neuronal signals detected by microelectrode arrays. Regalia G, Biffi E, Ferrigno G, Pedrocchi A. Comput Intell Neurosci; 2015 Sep 15; 2015():172396. PubMed ID: 25977683 [Abstract] [Full Text] [Related]
11. Analog frontend for multichannel neuronal recording system with spike and LFP separation. Perelman Y, Ginosar R. J Neurosci Methods; 2006 May 15; 153(1):21-6. PubMed ID: 16337276 [Abstract] [Full Text] [Related]
13. Alternative post-processing on a CMOS chip to fabricate a planar microelectrode array. López-Huerta F, Herrera-May AL, Estrada-López JJ, Zuñiga-Islas C, Cervantes-Sanchez B, Soto E, Soto-Cruz BS. Sensors (Basel); 2011 May 15; 11(11):10940-57. PubMed ID: 22346681 [Abstract] [Full Text] [Related]
14. Design of a CMOS-based multichannel integrated biosensor chip for bioelectronic interface with neurons. Zhang X, Wong WM, Zhang Y, Zhang Y, Gao F, Nelson RD, Larue JC. Annu Int Conf IEEE Eng Med Biol Soc; 2009 May 15; 2009():3814-7. PubMed ID: 19965239 [Abstract] [Full Text] [Related]
15. A microelectrode/microelectronic hybrid device for brain implantable neuroprosthesis applications. Patterson WR, Song YK, Bull CW, Ozden I, Deangellis AP, Lay C, McKay JL, Nurmikko AV, Donoghue JD, Connors BW. IEEE Trans Biomed Eng; 2004 Oct 15; 51(10):1845-53. PubMed ID: 15490832 [Abstract] [Full Text] [Related]
17. A fully integrated neural recording amplifier with DC input stabilization. Mohseni P, Najafi K. IEEE Trans Biomed Eng; 2004 May 15; 51(5):832-7. PubMed ID: 15132510 [Abstract] [Full Text] [Related]
18. Wireless neural recording with single low-power integrated circuit. Harrison RR, Kier RJ, Chestek CA, Gilja V, Nuyujukian P, Ryu S, Greger B, Solzbacher F, Shenoy KV. IEEE Trans Neural Syst Rehabil Eng; 2009 Aug 15; 17(4):322-9. PubMed ID: 19497825 [Abstract] [Full Text] [Related]
19. Active C4 Electrodes for Local Field Potential Recording Applications. Wang L, Freedman D, Sahin M, Ünlü MS, Knepper R. Sensors (Basel); 2016 Feb 04; 16(2):198. PubMed ID: 26861324 [Abstract] [Full Text] [Related]
20. A miniaturized neuroprosthesis suitable for implantation into the brain. Mojarradi M, Binkley D, Blalock B, Andersen R, Ulshoefer N, Johnson T, Del Castillo L. IEEE Trans Neural Syst Rehabil Eng; 2003 Mar 04; 11(1):38-42. PubMed ID: 12797724 [Abstract] [Full Text] [Related] Page: [Next] [New Search]