These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
112 related items for PubMed ID: 14709724
1. A domain of Rad9 specifically required for activation of Chk1 in budding yeast. Blankley RT, Lydall D. J Cell Sci; 2004 Feb 01; 117(Pt 4):601-8. PubMed ID: 14709724 [Abstract] [Full Text] [Related]
2. Activation of Mrc1, a mediator of the replication checkpoint, by telomere erosion. Grandin N, Bailly A, Charbonneau M. Biol Cell; 2005 Oct 01; 97(10):799-814. PubMed ID: 15760303 [Abstract] [Full Text] [Related]
3. Rad9 phosphorylation sites couple Rad53 to the Saccharomyces cerevisiae DNA damage checkpoint. Schwartz MF, Duong JK, Sun Z, Morrow JS, Pradhan D, Stern DF. Mol Cell; 2002 May 01; 9(5):1055-65. PubMed ID: 12049741 [Abstract] [Full Text] [Related]
4. The budding yeast Rad9 checkpoint protein is subjected to Mec1/Tel1-dependent hyperphosphorylation and interacts with Rad53 after DNA damage. Vialard JE, Gilbert CS, Green CM, Lowndes NF. EMBO J; 1998 Oct 01; 17(19):5679-88. PubMed ID: 9755168 [Abstract] [Full Text] [Related]
5. Saccharomyces cerevisiae Rad9 acts as a Mec1 adaptor to allow Rad53 activation. Sweeney FD, Yang F, Chi A, Shabanowitz J, Hunt DF, Durocher D. Curr Biol; 2005 Aug 09; 15(15):1364-75. PubMed ID: 16085488 [Abstract] [Full Text] [Related]
6. Mec1 and Rad53 inhibit formation of single-stranded DNA at telomeres of Saccharomyces cerevisiae cdc13-1 mutants. Jia X, Weinert T, Lydall D. Genetics; 2004 Feb 09; 166(2):753-64. PubMed ID: 15020465 [Abstract] [Full Text] [Related]
7. Use of quantitative mass spectrometric analysis to elucidate the mechanisms of phospho-priming and auto-activation of the checkpoint kinase Rad53 in vivo. Chen ES, Hoch NC, Wang SC, Pellicioli A, Heierhorst J, Tsai MD. Mol Cell Proteomics; 2014 Feb 09; 13(2):551-65. PubMed ID: 24302356 [Abstract] [Full Text] [Related]
8. Budding yeast Rtt107 prevents checkpoint hyperactivation after replicative stress by limiting DNA damage. Brown JAR, Kobor MS. DNA Repair (Amst); 2019 Feb 09; 74():1-16. PubMed ID: 30639951 [Abstract] [Full Text] [Related]
9. Dissection of Rad9 BRCT domain function in the mitotic checkpoint response to telomere uncapping. Nnakwe CC, Altaf M, Côté J, Kron SJ. DNA Repair (Amst); 2009 Dec 03; 8(12):1452-61. PubMed ID: 19880356 [Abstract] [Full Text] [Related]
10. Site-specific phosphorylation of the DNA damage response mediator rad9 by cyclin-dependent kinases regulates activation of checkpoint kinase 1. Abreu CM, Kumar R, Hamilton D, Dawdy AW, Creavin K, Eivers S, Finn K, Balsbaugh JL, O'Connor R, Kiely PA, Shabanowitz J, Hunt DF, Grenon M, Lowndes NF. PLoS Genet; 2013 Apr 03; 9(4):e1003310. PubMed ID: 23593009 [Abstract] [Full Text] [Related]
11. A Rad53 independent function of Rad9 becomes crucial for genome maintenance in the absence of the Recq helicase Sgs1. Nielsen I, Bentsen IB, Andersen AH, Gasser SM, Bjergbaek L. PLoS One; 2013 Apr 03; 8(11):e81015. PubMed ID: 24278365 [Abstract] [Full Text] [Related]
12. Rad53 FHA domain associated with phosphorylated Rad9 in the DNA damage checkpoint. Sun Z, Hsiao J, Fay DS, Stern DF. Science; 1998 Jul 10; 281(5374):272-4. PubMed ID: 9657725 [Abstract] [Full Text] [Related]
13. Two serine phosphorylation sites in the C-terminus of Rad9 are critical for 9-1-1 binding to TopBP1 and activation of the DNA damage checkpoint response in HeLa cells. Ueda S, Takeishi Y, Ohashi E, Tsurimoto T. Genes Cells; 2012 Oct 10; 17(10):807-16. PubMed ID: 22925454 [Abstract] [Full Text] [Related]
14. RAD53, DUN1 and PDS1 define two parallel G2/M checkpoint pathways in budding yeast. Gardner R, Putnam CW, Weinert T. EMBO J; 1999 Jun 01; 18(11):3173-85. PubMed ID: 10357828 [Abstract] [Full Text] [Related]
15. EXO1-dependent single-stranded DNA at telomeres activates subsets of DNA damage and spindle checkpoint pathways in budding yeast yku70Delta mutants. Maringele L, Lydall D. Genes Dev; 2002 Aug 01; 16(15):1919-33. PubMed ID: 12154123 [Abstract] [Full Text] [Related]
16. Multiple phosphorylation of Rad9 by CDK is required for DNA damage checkpoint activation. Wang G, Tong X, Weng S, Zhou H. Cell Cycle; 2012 Oct 15; 11(20):3792-800. PubMed ID: 23070520 [Abstract] [Full Text] [Related]
17. Cell cycle progression in the presence of irreparable DNA damage is controlled by a Mec1- and Rad53-dependent checkpoint in budding yeast. Neecke H, Lucchini G, Longhese MP. EMBO J; 1999 Aug 16; 18(16):4485-97. PubMed ID: 10449414 [Abstract] [Full Text] [Related]
18. Conserved ATRMec1 phosphorylation-independent activation of Chk1 by single amino acid substitution in the GD domain. Pereira E, Chen Y, Sanchez Y. Cell Cycle; 2009 Jun 01; 8(11):1788-93. PubMed ID: 19411848 [Abstract] [Full Text] [Related]
19. Saccharomyces cerevisiae RAD53 (CHK2) but not CHK1 is required for double-strand break-initiated SCE and DNA damage-associated SCE after exposure to X rays and chemical agents. Fasullo M, Dong Z, Sun M, Zeng L. DNA Repair (Amst); 2005 Nov 21; 4(11):1240-51. PubMed ID: 16039914 [Abstract] [Full Text] [Related]
20. Docking onto chromatin via the Saccharomyces cerevisiae Rad9 Tudor domain. Grenon M, Costelloe T, Jimeno S, O'Shaughnessy A, Fitzgerald J, Zgheib O, Degerth L, Lowndes NF. Yeast; 2007 Feb 21; 24(2):105-19. PubMed ID: 17243194 [Abstract] [Full Text] [Related] Page: [Next] [New Search]