These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
209 related items for PubMed ID: 14735461
1. Enhancement of chemotherapeutic response of tumor cells by a heme oxygenase inhibitor, pegylated zinc protoporphyrin. Fang J, Sawa T, Akaike T, Greish K, Maeda H. Int J Cancer; 2004 Mar; 109(1):1-8. PubMed ID: 14735461 [Abstract] [Full Text] [Related]
2. Tumor-targeted induction of oxystress for cancer therapy. Fang J, Nakamura H, Iyer AK. J Drug Target; 2007 Mar; 15(7-8):475-86. PubMed ID: 17671894 [Abstract] [Full Text] [Related]
3. In vivo antitumor activity of pegylated zinc protoporphyrin: targeted inhibition of heme oxygenase in solid tumor. Fang J, Sawa T, Akaike T, Akuta T, Sahoo SK, Khaled G, Hamada A, Maeda H. Cancer Res; 2003 Jul 01; 63(13):3567-74. PubMed ID: 12839943 [Abstract] [Full Text] [Related]
4. Pegylated zinc protoporphyrin: a water-soluble heme oxygenase inhibitor with tumor-targeting capacity. Sahoo SK, Sawa T, Fang J, Tanaka S, Miyamoto Y, Akaike T, Maeda H. Bioconjug Chem; 2002 Jul 01; 13(5):1031-8. PubMed ID: 12236785 [Abstract] [Full Text] [Related]
5. Effect of different chemical bonds in pegylation of zinc protoporphyrin that affects drug release, intracellular uptake, and therapeutic effect in the tumor. Tsukigawa K, Nakamura H, Fang J, Otagiri M, Maeda H. Eur J Pharm Biopharm; 2015 Jan 01; 89():259-70. PubMed ID: 25527214 [Abstract] [Full Text] [Related]
6. HSP32 (HO-1) inhibitor, copoly(styrene-maleic acid)-zinc protoporphyrin IX, a water-soluble micelle as anticancer agent: In vitro and in vivo anticancer effect. Fang J, Greish K, Qin H, Liao L, Nakamura H, Takeya M, Maeda H. Eur J Pharm Biopharm; 2012 Aug 01; 81(3):540-7. PubMed ID: 22576132 [Abstract] [Full Text] [Related]
7. Oxystress inducing antitumor therapeutics via tumor-targeted delivery of PEG-conjugated D-amino acid oxidase. Fang J, Deng D, Nakamura H, Akuta T, Qin H, Iyer AK, Greish K, Maeda H. Int J Cancer; 2008 Mar 01; 122(5):1135-44. PubMed ID: 17990314 [Abstract] [Full Text] [Related]
8. Zinc protoporphyrin IX enhances chemotherapeutic response of hepatoma cells to cisplatin. Liu YS, Li HS, Qi DF, Zhang J, Jiang XC, Shi K, Zhang XJ, Zhang XH. World J Gastroenterol; 2014 Jul 14; 20(26):8572-82. PubMed ID: 25024611 [Abstract] [Full Text] [Related]
9. Management of oxidative stress by heme oxygenase-1 in cisplatin-induced toxicity in renal tubular cells. Schaaf GJ, Maas RF, de Groene EM, Fink-Gremmels J. Free Radic Res; 2002 Aug 14; 36(8):835-43. PubMed ID: 12420741 [Abstract] [Full Text] [Related]
10. Therapeutic strategies by modulating oxygen stress in cancer and inflammation. Fang J, Seki T, Maeda H. Adv Drug Deliv Rev; 2009 Apr 28; 61(4):290-302. PubMed ID: 19249331 [Abstract] [Full Text] [Related]
11. Zinc protoporphyrin polymeric nanoparticles: potent heme oxygenase inhibitor for cancer therapy. Rouhani H, Sepehri N, Montazeri H, Khoshayand MR, Ghahremani MH, Ostad SN, Atyabi F, Dinarvand R. Pharm Res; 2014 Aug 28; 31(8):2124-39. PubMed ID: 24558012 [Abstract] [Full Text] [Related]
12. Intracellular uptake and behavior of two types zinc protoporphyrin (ZnPP) micelles, SMA-ZnPP and PEG-ZnPP as anticancer agents; unique intracellular disintegration of SMA micelles. Nakamura H, Fang J, Gahininath B, Tsukigawa K, Maeda H. J Control Release; 2011 Nov 07; 155(3):367-75. PubMed ID: 21600248 [Abstract] [Full Text] [Related]
13. Tumor-targeted delivery of polyethylene glycol-conjugated D-amino acid oxidase for antitumor therapy via enzymatic generation of hydrogen peroxide. Fang J, Sawa T, Akaike T, Maeda H. Cancer Res; 2002 Jun 01; 62(11):3138-43. PubMed ID: 12036926 [Abstract] [Full Text] [Related]
14. The Hsp32 inhibitors SMA-ZnPP and PEG-ZnPP exert major growth-inhibitory effects on D34+/CD38+ and CD34+/CD38- AML progenitor cells. Herrmann H, Kneidinger M, Cerny-Reiterer S, Rülicke T, Willmann M, Gleixner KV, Blatt K, Hörmann G, Peter B, Samorapoompichit P, Pickl W, Bharate GY, Mayerhofer M, Sperr WR, Maeda H, Valent P. Curr Cancer Drug Targets; 2012 Jan 01; 12(1):51-63. PubMed ID: 22165967 [Abstract] [Full Text] [Related]
15. Dual pH-sensitive oxidative stress generating micellar nanoparticles as a novel anticancer therapeutic agent. Park S, Kwon B, Yang W, Han E, Yoo W, Kwon BM, Lee D. J Control Release; 2014 Dec 28; 196():19-27. PubMed ID: 25278257 [Abstract] [Full Text] [Related]
16. Tumor-targeting chemotherapy by a xanthine oxidase-polymer conjugate that generates oxygen-free radicals in tumor tissue. Sawa T, Wu J, Akaike T, Maeda H. Cancer Res; 2000 Feb 01; 60(3):666-71. PubMed ID: 10676651 [Abstract] [Full Text] [Related]
17. Crucial role of heme oxygenase-1 on the sensitivity of cholangiocarcinoma cells to chemotherapeutic agents. Kongpetch S, Kukongviriyapan V, Prawan A, Senggunprai L, Kukongviriyapan U, Buranrat B. PLoS One; 2012 Feb 01; 7(4):e34994. PubMed ID: 22514698 [Abstract] [Full Text] [Related]
18. Curcumin, an antioxidant and anti-inflammatory agent, induces heme oxygenase-1 and protects endothelial cells against oxidative stress. Motterlini R, Foresti R, Bassi R, Green CJ. Free Radic Biol Med; 2000 Apr 15; 28(8):1303-12. PubMed ID: 10889462 [Abstract] [Full Text] [Related]
19. Unique effects of zinc protoporphyrin on HO-1 induction and apoptosis. Yang G, Nguyen X, Ou J, Rekulapelli P, Stevenson DK, Dennery PA. Blood; 2001 Mar 01; 97(5):1306-13. PubMed ID: 11222374 [Abstract] [Full Text] [Related]
20. Effect of glutathione depletion on antitumor drug toxicity (apoptosis and necrosis) in U-937 human promonocytic cells. The role of intracellular oxidation. Troyano A, Fernández C, Sancho P, de Blas E, Aller P. J Biol Chem; 2001 Dec 14; 276(50):47107-15. PubMed ID: 11602574 [Abstract] [Full Text] [Related] Page: [Next] [New Search]