These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
173 related items for PubMed ID: 14739329
21. Reassessment of acarbose as a transition state analogue inhibitor of cyclodextrin glycosyltransferase. Mosi R, Sham H, Uitdehaag JC, Ruiterkamp R, Dijkstra BW, Withers SG. Biochemistry; 1998 Dec 08; 37(49):17192-8. PubMed ID: 9860832 [Abstract] [Full Text] [Related]
22. The raw starch binding domain of cyclodextrin glycosyltransferase from Bacillus circulans strain 251. Penninga D, van der Veen BA, Knegtel RM, van Hijum SA, Rozeboom HJ, Kalk KH, Dijkstra BW, Dijkhuizen L. J Biol Chem; 1996 Dec 20; 271(51):32777-84. PubMed ID: 8955113 [Abstract] [Full Text] [Related]
23. X-ray structures along the reaction pathway of cyclodextrin glycosyltransferase elucidate catalysis in the alpha-amylase family. Uitdehaag JC, Mosi R, Kalk KH, van der Veen BA, Dijkhuizen L, Withers SG, Dijkstra BW. Nat Struct Biol; 1999 May 20; 6(5):432-6. PubMed ID: 10331869 [Abstract] [Full Text] [Related]
24. The residue 179 is involved in product specificity of the Bacillus circulans DF 9R cyclodextrin glycosyltransferase. Costa H, Distéfano AJ, Marino-Buslje C, Hidalgo A, Berenguer J, Biscoglio de Jiménez Bonino M, Ferrarotti SA. Appl Microbiol Biotechnol; 2012 Apr 20; 94(1):123-30. PubMed ID: 21993482 [Abstract] [Full Text] [Related]
25. Mutations at subsite -3 in cyclodextrin glycosyltransferase from Paenibacillus macerans enhancing alpha-cyclodextrin specificity. Li Z, Zhang J, Wang M, Gu Z, Du G, Li J, Wu J, Chen J. Appl Microbiol Biotechnol; 2009 Jun 20; 83(3):483-90. PubMed ID: 19190904 [Abstract] [Full Text] [Related]
26. Engineering of cyclodextrin product specificity and pH optima of the thermostable cyclodextrin glycosyltransferase from Thermoanaerobacterium thermosulfurigenes EM1. Wind RD, Uitdehaag JC, Buitelaar RM, Dijkstra BW, Dijkhuizen L. J Biol Chem; 1998 Mar 06; 273(10):5771-9. PubMed ID: 9488711 [Abstract] [Full Text] [Related]
27. Conversion of cyclodextrin glycosyltransferase into a starch hydrolase by directed evolution: the role of alanine 230 in acceptor subsite +1. Leemhuis H, Rozeboom HJ, Wilbrink M, Euverink GJ, Dijkstra BW, Dijkhuizen L. Biochemistry; 2003 Jun 24; 42(24):7518-26. PubMed ID: 12809508 [Abstract] [Full Text] [Related]
28. The remote substrate binding subsite -6 in cyclodextrin-glycosyltransferase controls the transferase activity of the enzyme via an induced-fit mechanism. Leemhuis H, Uitdehaag JC, Rozeboom HJ, Dijkstra BW, Dijkhuizen L. J Biol Chem; 2002 Jan 11; 277(2):1113-9. PubMed ID: 11696539 [Abstract] [Full Text] [Related]
36. Biosynthesis of 2-O-D-glucopyranosyl-l-ascorbic acid from maltose by an engineered cyclodextrin glycosyltransferase from Paenibacillus macerans. Liu L, Han R, Shin HD, Li J, Du G, Chen J. Carbohydr Res; 2013 Dec 15; 382():101-7. PubMed ID: 24239542 [Abstract] [Full Text] [Related]
38. Carbohydrate-binding architecture of the multi-modular α-1,6-glucosyltransferase from Paenibacillus sp. 598K, which produces α-1,6-glucosyl-α-glucosaccharides from starch. Fujimoto Z, Suzuki N, Kishine N, Ichinose H, Momma M, Kimura A, Funane K. Biochem J; 2017 Aug 07; 474(16):2763-2778. PubMed ID: 28698247 [Abstract] [Full Text] [Related]