These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
251 related items for PubMed ID: 14747331
21. Electrochemical synthesis and impedance characterization of nano-patterned biosensor substrate. Takhistov P. Biosens Bioelectron; 2004 Jun 15; 19(11):1445-56. PubMed ID: 15093216 [Abstract] [Full Text] [Related]
22. Evaluation of nano-porous alumina membranes for hemodialysis application. Attaluri AC, Huang Z, Belwalkar A, Van Geertruyden W, Gao D, Misiolek W. ASAIO J; 2009 Jun 15; 55(3):217-23. PubMed ID: 19293709 [Abstract] [Full Text] [Related]
23. Gramicidin A interaction at a dioleoyl phosphatidylcholine monolayer on a mercury drop electrode. Lindholm-Sethson B, Nyström J, Geladi P, Nelson A. Anal Bioanal Chem; 2003 Feb 15; 375(3):350-5. PubMed ID: 12589498 [Abstract] [Full Text] [Related]
24. Pore Forming Properties of Alamethicin in Negatively Charged Floating Bilayer Lipid Membranes Supported on Gold Electrodes. Abbasi F, Alvarez-Malmagro J, Su Z, Leitch JJ, Lipkowski J. Langmuir; 2018 Nov 13; 34(45):13754-13765. PubMed ID: 30265810 [Abstract] [Full Text] [Related]
25. Magainin 2 channel formation in planar lipid membranes: the role of lipid polar groups and ergosterol. Gallucci E, Meleleo D, Micelli S, Picciarelli V. Eur Biophys J; 2003 Mar 13; 32(1):22-32. PubMed ID: 12632203 [Abstract] [Full Text] [Related]
26. Characterization of pore formation by streptolysin O on supported lipid membranes by impedance spectroscopy and surface plasmon resonance spectroscopy. Wilkop T, Xu D, Cheng Q. Langmuir; 2007 Jan 30; 23(3):1403-9. PubMed ID: 17241065 [Abstract] [Full Text] [Related]
27. Supported membrane nanodevices. Anrather D, Smetazko M, Saba M, Alguel Y, Schalkhammer T. J Nanosci Nanotechnol; 2004 Jan 30; 4(1-2):1-22. PubMed ID: 15112538 [Abstract] [Full Text] [Related]
28. Membrane-mediated repulsion between gramicidin pores. Constantin D. Biochim Biophys Acta; 2009 Sep 30; 1788(9):1782-9. PubMed ID: 19464257 [Abstract] [Full Text] [Related]
29. Self-supporting nanoporous alumina membranes as substrates for hepatic cell cultures. Hoess A, Thormann A, Friedmann A, Heilmann A. J Biomed Mater Res A; 2012 Sep 30; 100(9):2230-8. PubMed ID: 22492687 [Abstract] [Full Text] [Related]
30. The effect of the hydrophilic spacer length on the functionality of a mercury-supported tethered bilayer lipid membrane. Becucci L, Faragher RJ, Schwan A. Bioelectrochemistry; 2015 Feb 30; 101():92-6. PubMed ID: 25180906 [Abstract] [Full Text] [Related]
31. Alpha-helical hydrophobic polypeptides form proton-selective channels in lipid bilayers. Oliver AE, Deamer DW. Biophys J; 1994 May 30; 66(5):1364-79. PubMed ID: 7520289 [Abstract] [Full Text] [Related]
32. Ultrathin carbon nanotube-DNA hybrid membrane formation by simple physical adsorption onto a thin alumina substrate. Guo M, Lv W, Zhang S, Jin FM, Wang Q, Ling GW, Yang QH. Nanotechnology; 2010 Jul 16; 21(28):285601. PubMed ID: 20562483 [Abstract] [Full Text] [Related]
33. Understanding pore rearrangement during mild to hard transition in bilayered porous anodic alumina membranes. Santos A, Montero-Moreno JM, Bachmann J, Nielsch K, Formentín P, Ferré-Borrull J, Pallarès J, Marsal LF. ACS Appl Mater Interfaces; 2011 Jun 16; 3(6):1925-32. PubMed ID: 21539376 [Abstract] [Full Text] [Related]
34. Analysis of Ion Transport through a Single Channel of Gramicidin A in Bilayer Lipid Membranes. Kubota S, Shirai O, Kitazumi Y, Kano K. Anal Sci; 2016 Jun 16; 32(2):189-92. PubMed ID: 26860564 [Abstract] [Full Text] [Related]
35. Fractional polymerization of a suspended planar bilayer creates a fluid, highly stable membrane for ion channel recordings. Heitz BA, Jones IW, Hall HK, Aspinwall CA, Saavedra SS. J Am Chem Soc; 2010 May 26; 132(20):7086-93. PubMed ID: 20441163 [Abstract] [Full Text] [Related]
36. Structural study of very thin anodic alumina films on silicon by anodization in citric acid aqueous solution. Kokonou M, Nassiopoulou AG, Giannakopoulos KP, Boukos N, Travlos A. J Nanosci Nanotechnol; 2005 Mar 26; 5(3):454-8. PubMed ID: 15913255 [Abstract] [Full Text] [Related]
37. Resonance-mode electrochemical impedance measurements of silicon dioxide supported lipid bilayer formation and ion channel mediated charge transport. Lundgren A, Hedlund J, Andersson O, Brändén M, Kunze A, Elwing H, Höök F. Anal Chem; 2011 Oct 15; 83(20):7800-6. PubMed ID: 21877702 [Abstract] [Full Text] [Related]
38. High-aspect ratio nano-noodles of alumina and titania. Friedman AL, Panaitescu E, Richter C, Menon L. J Nanosci Nanotechnol; 2008 Nov 15; 8(11):5864-8. PubMed ID: 19198318 [Abstract] [Full Text] [Related]
39. Modulation of the conductance of a 2,2'-bipyridine-functionalized peptidic ion channel by Ni2+. Pilz CS, Steinem C. Eur Biophys J; 2008 Jul 15; 37(6):1065-71. PubMed ID: 18347789 [Abstract] [Full Text] [Related]
40. Electric field effects on membranes: gramicidin A as a test ground. Siu SW, Böckmann RA. J Struct Biol; 2007 Mar 15; 157(3):545-56. PubMed ID: 17116406 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]