These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


161 related items for PubMed ID: 14747707

  • 1. Structure of circularly permuted DsbA(Q100T99): preserved global fold and local structural adjustments.
    Manjasetty BA, Hennecke J, Glockshuber R, Heinemann U.
    Acta Crystallogr D Biol Crystallogr; 2004 Feb; 60(Pt 2):304-9. PubMed ID: 14747707
    [Abstract] [Full Text] [Related]

  • 2. Conversion of a catalytic into a structural disulfide bond by circular permutation.
    Hennecke J, Glockshuber R.
    Biochemistry; 1998 Dec 15; 37(50):17590-7. PubMed ID: 9860875
    [Abstract] [Full Text] [Related]

  • 3. Structure of reduced DsbA from Escherichia coli in solution.
    Schirra HJ, Renner C, Czisch M, Huber-Wunderlich M, Holak TA, Glockshuber R.
    Biochemistry; 1998 May 05; 37(18):6263-76. PubMed ID: 9572841
    [Abstract] [Full Text] [Related]

  • 4. Complementation of DsbA deficiency with secreted thioredoxin variants reveals the crucial role of an efficient dithiol oxidant for catalyzed protein folding in the bacterial periplasm.
    Jonda S, Huber-Wunderlich M, Glockshuber R, Mössner E.
    EMBO J; 1999 Jun 15; 18(12):3271-81. PubMed ID: 10369668
    [Abstract] [Full Text] [Related]

  • 5. Random circular permutation of DsbA reveals segments that are essential for protein folding and stability.
    Hennecke J, Sebbel P, Glockshuber R.
    J Mol Biol; 1999 Mar 05; 286(4):1197-215. PubMed ID: 10047491
    [Abstract] [Full Text] [Related]

  • 6. Crystal structure of the protein disulfide bond isomerase, DsbC, from Escherichia coli.
    McCarthy AA, Haebel PW, Törrönen A, Rybin V, Baker EN, Metcalf P.
    Nat Struct Biol; 2000 Mar 05; 7(3):196-9. PubMed ID: 10700276
    [Abstract] [Full Text] [Related]

  • 7. The uncharged surface features surrounding the active site of Escherichia coli DsbA are conserved and are implicated in peptide binding.
    Guddat LW, Bardwell JC, Zander T, Martin JL.
    Protein Sci; 1997 Jun 05; 6(6):1148-56. PubMed ID: 9194175
    [Abstract] [Full Text] [Related]

  • 8. Quenching of tryptophan fluorescence by the active-site disulfide bridge in the DsbA protein from Escherichia coli.
    Hennecke J, Sillen A, Huber-Wunderlich M, Engelborghs Y, Glockshuber R.
    Biochemistry; 1997 May 27; 36(21):6391-400. PubMed ID: 9174355
    [Abstract] [Full Text] [Related]

  • 9. Determination of the DeltapKa between the active site cysteines of thioredoxin and DsbA.
    Carvalho AT, Fernandes PA, Ramos MJ.
    J Comput Chem; 2006 Jun 27; 27(8):966-75. PubMed ID: 16586531
    [Abstract] [Full Text] [Related]

  • 10. Structural analysis of three His32 mutants of DsbA: support for an electrostatic role of His32 in DsbA stability.
    Guddat LW, Bardwell JC, Glockshuber R, Huber-Wunderlich M, Zander T, Martin JL.
    Protein Sci; 1997 Sep 27; 6(9):1893-900. PubMed ID: 9300489
    [Abstract] [Full Text] [Related]

  • 11. Crystal structure of the DsbA protein required for disulphide bond formation in vivo.
    Martin JL, Bardwell JC, Kuriyan J.
    Nature; 1993 Sep 30; 365(6445):464-8. PubMed ID: 8413591
    [Abstract] [Full Text] [Related]

  • 12. Intriguing conformation changes associated with the trans/cis isomerization of a prolyl residue in the active site of the DsbA C33A mutant.
    Ondo-Mbele E, Vivès C, Koné A, Serre L.
    J Mol Biol; 2005 Apr 01; 347(3):555-63. PubMed ID: 15755450
    [Abstract] [Full Text] [Related]

  • 13. On the role of the cis-proline residue in the active site of DsbA.
    Charbonnier JB, Belin P, Moutiez M, Stura EA, Quéméneur E.
    Protein Sci; 1999 Jan 01; 8(1):96-105. PubMed ID: 10210188
    [Abstract] [Full Text] [Related]

  • 14. Probing the flexibility of the DsbA oxidoreductase from Vibrio cholerae--a 15N - 1H heteronuclear NMR relaxation analysis of oxidized and reduced forms of DsbA.
    Horne J, d'Auvergne EJ, Coles M, Velkov T, Chin Y, Charman WN, Prankerd R, Gooley PR, Scanlon MJ.
    J Mol Biol; 2007 Aug 17; 371(3):703-16. PubMed ID: 17585933
    [Abstract] [Full Text] [Related]

  • 15. A molecular model for the redox potential difference between thioredoxin and DsbA, based on electrostatics calculations.
    Gane PJ, Freedman RB, Warwicker J.
    J Mol Biol; 1995 Jun 02; 249(2):376-87. PubMed ID: 7783200
    [Abstract] [Full Text] [Related]

  • 16. Differences between the electronic environments of reduced and oxidized Escherichia coli DsbA inferred from heteronuclear magnetic resonance spectroscopy.
    Couprie J, Remerowski ML, Bailleul A, Courçon M, Gilles N, Quéméneur E, Jamin N.
    Protein Sci; 1998 Oct 02; 7(10):2065-80. PubMed ID: 9792093
    [Abstract] [Full Text] [Related]

  • 17. Structure, dynamics and electrostatics of the active site of glutaredoxin 3 from Escherichia coli: comparison with functionally related proteins.
    Foloppe N, Sagemark J, Nordstrand K, Berndt KD, Nilsson L.
    J Mol Biol; 2001 Jul 06; 310(2):449-70. PubMed ID: 11428900
    [Abstract] [Full Text] [Related]

  • 18. Competition between DsbA-mediated oxidation and conformational folding of RTEM1 beta-lactamase.
    Frech C, Wunderlich M, Glockshuber R, Schmid FX.
    Biochemistry; 1996 Sep 03; 35(35):11386-95. PubMed ID: 8784194
    [Abstract] [Full Text] [Related]

  • 19. Characterization of Escherichia coli thioredoxin variants mimicking the active-sites of other thiol/disulfide oxidoreductases.
    Mössner E, Huber-Wunderlich M, Glockshuber R.
    Protein Sci; 1998 May 03; 7(5):1233-44. PubMed ID: 9605329
    [Abstract] [Full Text] [Related]

  • 20. Structure and function of the oxidoreductase DsbA1 from Neisseria meningitidis.
    Vivian JP, Scoullar J, Rimmer K, Bushell SR, Beddoe T, Wilce MC, Byres E, Boyle TP, Doak B, Simpson JS, Graham B, Heras B, Kahler CM, Rossjohn J, Scanlon MJ.
    J Mol Biol; 2009 Dec 18; 394(5):931-43. PubMed ID: 19815019
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.