These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


230 related items for PubMed ID: 14747990

  • 1. Substrate binding to mononuclear metallo-beta-lactamase from Bacillus cereus.
    Dal Peraro M, Vila AJ, Carloni P.
    Proteins; 2004 Feb 15; 54(3):412-23. PubMed ID: 14747990
    [Abstract] [Full Text] [Related]

  • 2. Crystal structure of the zinc-dependent beta-lactamase from Bacillus cereus at 1.9 A resolution: binuclear active site with features of a mononuclear enzyme.
    Fabiane SM, Sohi MK, Wan T, Payne DJ, Bateson JH, Mitchell T, Sutton BJ.
    Biochemistry; 1998 Sep 08; 37(36):12404-11. PubMed ID: 9730812
    [Abstract] [Full Text] [Related]

  • 3. Structural determinants and hydrogen-bond network of the mononuclear zinc(II)-beta-lactamase active site.
    Dal Peraro M, Vila AJ, Carloni P.
    J Biol Inorg Chem; 2002 Sep 08; 7(7-8):704-12. PubMed ID: 12203007
    [Abstract] [Full Text] [Related]

  • 4. Effect of pH on the active site of an Arg121Cys mutant of the metallo-beta-lactamase from Bacillus cereus: implications for the enzyme mechanism.
    Davies AM, Rasia RM, Vila AJ, Sutton BJ, Fabiane SM.
    Biochemistry; 2005 Mar 29; 44(12):4841-9. PubMed ID: 15779910
    [Abstract] [Full Text] [Related]

  • 5. Water-assisted reaction mechanism of monozinc beta-lactamases.
    Dal Peraro M, Llarrull LI, Rothlisberger U, Vila AJ, Carloni P.
    J Am Chem Soc; 2004 Oct 06; 126(39):12661-8. PubMed ID: 15453800
    [Abstract] [Full Text] [Related]

  • 6. Hybrid QM/MM and DFT investigations of the catalytic mechanism and inhibition of the dinuclear zinc metallo-beta-lactamase CcrA from Bacteroides fragilis.
    Park H, Brothers EN, Merz KM.
    J Am Chem Soc; 2005 Mar 30; 127(12):4232-41. PubMed ID: 15783205
    [Abstract] [Full Text] [Related]

  • 7. Hydroxyl groups in the betabeta sandwich of metallo-beta-lactamases favor enzyme activity: Tyr218 and Ser262 pull down the lid.
    Oelschlaeger P, Pleiss J.
    J Mol Biol; 2007 Feb 09; 366(1):316-29. PubMed ID: 17157873
    [Abstract] [Full Text] [Related]

  • 8. Substrate binding and catalytic mechanism in phospholipase C from Bacillus cereus: a molecular mechanics and molecular dynamics study.
    da Graça Thrige D, Buur JR, Jørgensen FS.
    Biopolymers; 1997 Sep 09; 42(3):319-36. PubMed ID: 9279125
    [Abstract] [Full Text] [Related]

  • 9. Structural effects of the active site mutation cysteine to serine in Bacillus cereus zinc-beta-lactamase.
    Chantalat L, Duée E, Galleni M, Frère JM, Dideberg O.
    Protein Sci; 2000 Jul 09; 9(7):1402-6. PubMed ID: 10933508
    [Abstract] [Full Text] [Related]

  • 10. Metal content and localization during turnover in B. cereus metallo-beta-lactamase.
    Llarrull LI, Tioni MF, Vila AJ.
    J Am Chem Soc; 2008 Nov 26; 130(47):15842-51. PubMed ID: 18980306
    [Abstract] [Full Text] [Related]

  • 11. The variation of catalytic efficiency of Bacillus cereus metallo-beta-lactamase with different active site metal ions.
    Badarau A, Page MI.
    Biochemistry; 2006 Sep 05; 45(35):10654-66. PubMed ID: 16939217
    [Abstract] [Full Text] [Related]

  • 12. The activity of the dinuclear cobalt-beta-lactamase from Bacillus cereus in catalysing the hydrolysis of beta-lactams.
    Badarau A, Damblon C, Page MI.
    Biochem J; 2007 Jan 01; 401(1):197-203. PubMed ID: 16961465
    [Abstract] [Full Text] [Related]

  • 13. Kinetics of turnover of cefotaxime by the Enterobacter cloacae P99 and GCl beta-lactamases: two free enzyme forms of the P99 beta-lactamase detected by a combination of pre- and post-steady state kinetics.
    Kumar S, Adediran SA, Nukaga M, Pratt RF.
    Biochemistry; 2004 Mar 09; 43(9):2664-72. PubMed ID: 14992604
    [Abstract] [Full Text] [Related]

  • 14. Positively cooperative binding of zinc ions to Bacillus cereus 569/H/9 beta-lactamase II suggests that the binuclear enzyme is the only relevant form for catalysis.
    Jacquin O, Balbeur D, Damblon C, Marchot P, De Pauw E, Roberts GC, Frère JM, Matagne A.
    J Mol Biol; 2009 Oct 09; 392(5):1278-91. PubMed ID: 19665032
    [Abstract] [Full Text] [Related]

  • 15. Bulgecin A: a novel inhibitor of binuclear metallo-beta-lactamases.
    Simm AM, Loveridge EJ, Crosby J, Avison MB, Walsh TR, Bennett PM.
    Biochem J; 2005 May 01; 387(Pt 3):585-90. PubMed ID: 15569001
    [Abstract] [Full Text] [Related]

  • 16. Molecular dynamics simulations of the dinuclear zinc-beta-lactamase from Bacteroides fragilis complexed with imipenem.
    Suárez D, Díaz N, Merz KM.
    J Comput Chem; 2002 Dec 01; 23(16):1587-600. PubMed ID: 12395427
    [Abstract] [Full Text] [Related]

  • 17. The Zn2 position in metallo-beta-lactamases is critical for activity: a study on chimeric metal sites on a conserved protein scaffold.
    González JM, Medrano Martín FJ, Costello AL, Tierney DL, Vila AJ.
    J Mol Biol; 2007 Nov 09; 373(5):1141-56. PubMed ID: 17915249
    [Abstract] [Full Text] [Related]

  • 18. Molecular dynamics simulations of the mononuclear zinc-beta-lactamase from Bacillus cereus.
    Suárez D, Merz KM.
    J Am Chem Soc; 2001 Apr 25; 123(16):3759-70. PubMed ID: 11457108
    [Abstract] [Full Text] [Related]

  • 19. Antibiotic deactivation by a dizinc beta-lactamase: mechanistic insights from QM/MM and DFT studies.
    Xu D, Guo H, Cui Q.
    J Am Chem Soc; 2007 Sep 05; 129(35):10814-22. PubMed ID: 17691780
    [Abstract] [Full Text] [Related]

  • 20. A theoretical study on the substrate deacylation mechanism of class C beta-lactamase.
    Hata M, Tanaka Y, Fujii Y, Neya S, Hoshino T.
    J Phys Chem B; 2005 Aug 25; 109(33):16153-60. PubMed ID: 16853052
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.