These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
167 related items for PubMed ID: 14750743
41. Effect of NAPL Source Morphology on Mass Transfer in the Vadose Zone. Petri BG, Fučík R, Illangasekare TH, Smits KM, Christ JA, Sakaki T, Sauck CC. Ground Water; 2015; 53(5):685-98. PubMed ID: 25535651 [Abstract] [Full Text] [Related]
42. Enhanced contact of cosolvent and DNAPL in porous media by concurrent injection of cosolvent and air. Jeong SW, Wood AL, Lee TR. Environ Sci Technol; 2002 Dec 01; 36(23):5238-44. PubMed ID: 12523443 [Abstract] [Full Text] [Related]
43. Removal of NAPL from columns by oxidation, sparging, surfactant and thermal treatment. Jousse F, Atteia O, Höhener P, Cohen G. Chemosphere; 2017 Dec 01; 188():182-189. PubMed ID: 28886552 [Abstract] [Full Text] [Related]
44. Transport and retention of carbon dots (CDs) in saturated and unsaturated porous media: Role of ionic strength, pH, and collector grain size. Kamrani S, Rezaei M, Kord M, Baalousha M. Water Res; 2018 Apr 15; 133():338-347. PubMed ID: 28864305 [Abstract] [Full Text] [Related]
45. Surfactant-enhanced ozone sparging for removal of organic compounds from sand. Kim H, Yang S, Yang H. J Environ Sci Health A Tox Hazard Subst Environ Eng; 2013 Apr 15; 48(5):526-33. PubMed ID: 23383638 [Abstract] [Full Text] [Related]
46. Saturated and unsaturated flow through sloped compost filter beds of different particle sizes. Petrell RJ, Gumulia A. Water Sci Technol; 2013 Apr 15; 67(11):2406-11. PubMed ID: 23752370 [Abstract] [Full Text] [Related]
47. A laboratory simulation of toluene cleanup by air sparging of water-saturated sands. Peterson JW, DeBoer MJ, Lake KL. J Hazard Mater; 2000 Feb 25; 72(2-3):167-78. PubMed ID: 10650189 [Abstract] [Full Text] [Related]
48. A constitutive model for air-NAPL-water flow in the vadose zone accounting for immobile, non-occluded (residual) NAPL in strongly water-wet porous media. Lenhard RJ, Oostrom M, Dane JH. J Contam Hydrol; 2004 Jul 25; 71(1-4):261-82. PubMed ID: 15145570 [Abstract] [Full Text] [Related]
49. A constitutive model for air-NAPL-water flow in the vadose zone accounting for immobile, non-occluded (residual) NAPL in strongly water-wet porous media. Lenhard RJ, Oostrom M, Dane JH. J Contam Hydrol; 2004 Sep 25; 73(1-4):283-304. PubMed ID: 15614970 [Abstract] [Full Text] [Related]
50. Phenanthrene degradation in soil by ozonation: Effect of morphological and physicochemical properties. Rodriguez J, García A, Poznyak T, Chairez I. Chemosphere; 2017 Feb 25; 169():53-61. PubMed ID: 27855331 [Abstract] [Full Text] [Related]
51. On spurious water flow during numerical simulation of steam injection into water-saturated soil. Gudbjerg J, Trötschler O, Färber A, Sonnenborg TO, Jensen KH. J Contam Hydrol; 2004 Dec 25; 75(3-4):297-318. PubMed ID: 15610904 [Abstract] [Full Text] [Related]
52. Transport of Escherichia coli through variably saturated sand columns and modeling approaches. Jiang G, Noonan MJ, Buchan GD, Smith N. J Contam Hydrol; 2007 Aug 15; 93(1-4):2-20. PubMed ID: 17336421 [Abstract] [Full Text] [Related]
53. Measuring air-water interfacial area for soils using the mass balance surfactant-tracer method. Araujo JB, Mainhagu J, Brusseau ML. Chemosphere; 2015 Sep 15; 134():199-202. PubMed ID: 25950136 [Abstract] [Full Text] [Related]
54. Assessing the impact of water infiltration on LNAPL mobilization in sand column using simplified image analysis method. Alazaiza MYD, Ramli MH, Copty NK, Ling MC. J Contam Hydrol; 2021 Mar 15; 238():103769. PubMed ID: 33465656 [Abstract] [Full Text] [Related]
55. Crude oil contaminated soil washing in air sparging assisted stirred tank reactor using biosurfactants. Urum K, Pekdemir T, Ross D, Grigson S. Chemosphere; 2005 Jul 15; 60(3):334-43. PubMed ID: 15924952 [Abstract] [Full Text] [Related]
56. Removal of non-aqueous phase liquids (NAPLs) from TPH-saturated sandy aquifer sediments using in situ air sparging combined with soil vapor extraction. Lee JH, Woo HJ, Jeong KS. J Environ Sci Health A Tox Hazard Subst Environ Eng; 2018 Jul 15; 53(14):1253-1266. PubMed ID: 30623720 [Abstract] [Full Text] [Related]
57. Evaluation of air sparging and vadose zone aeration for remediation of iron and manganese-impacted groundwater at a closed municipal landfill. Pleasant S, O'Donnell A, Powell J, Jain P, Townsend T. Sci Total Environ; 2014 Jul 01; 485-486():31-40. PubMed ID: 24704954 [Abstract] [Full Text] [Related]
58. Effect of surface tension reduction on VOC removal during surfactant-enhanced air sparging. Kim H, Annable MD. J Environ Sci Health A Tox Hazard Subst Environ Eng; 2006 Jul 01; 41(12):2799-811. PubMed ID: 17114108 [Abstract] [Full Text] [Related]
59. Application of multiphase transport models to field remediation by air sparging and soil vapor extraction. Rahbeh ME, Mohtar RH. J Hazard Mater; 2007 May 08; 143(1-2):156-70. PubMed ID: 17141413 [Abstract] [Full Text] [Related]
60. Transport of fullerene nanoparticles (nC60) in saturated sand and sandy soil: controlling factors and modeling. Zhang L, Hou L, Wang L, Kan AT, Chen W, Tomson MB. Environ Sci Technol; 2012 Jul 03; 46(13):7230-8. PubMed ID: 22681192 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]