These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
282 related items for PubMed ID: 14754998
1. Kinetics of Mg2+ unblock of NMDA receptors: implications for spike-timing dependent synaptic plasticity. Kampa BM, Clements J, Jonas P, Stuart GJ. J Physiol; 2004 Apr 15; 556(Pt 2):337-45. PubMed ID: 14754998 [Abstract] [Full Text] [Related]
2. A slow fraction of Mg2+ unblock of NMDA receptors limits their contribution to spike generation in cortical pyramidal neurons. Vargas-Caballero M, Robinson HP. J Neurophysiol; 2003 May 15; 89(5):2778-83. PubMed ID: 12611983 [Abstract] [Full Text] [Related]
3. Temperature dependence of N-methyl-D-aspartate receptor channels and N-methyl-D-aspartate receptor excitatory postsynaptic currents. Korinek M, Sedlacek M, Cais O, Dittert I, Vyklicky L. Neuroscience; 2010 Feb 03; 165(3):736-48. PubMed ID: 19883737 [Abstract] [Full Text] [Related]
4. Effects of divalent cations on slow unblock of native NMDA receptors in mouse neocortical pyramidal neurons. Kim NK, Robinson HP. Eur J Neurosci; 2011 Jul 03; 34(2):199-212. PubMed ID: 21722211 [Abstract] [Full Text] [Related]
5. Spike-timing-dependent synaptic plasticity depends on dendritic location. Froemke RC, Poo MM, Dan Y. Nature; 2005 Mar 10; 434(7030):221-5. PubMed ID: 15759002 [Abstract] [Full Text] [Related]
6. A plateau potential mediated by the activation of extrasynaptic NMDA receptors in rat hippocampal CA1 pyramidal neurons. Suzuki T, Kodama S, Hoshino C, Izumi T, Miyakawa H. Eur J Neurosci; 2008 Aug 10; 28(3):521-34. PubMed ID: 18702724 [Abstract] [Full Text] [Related]
7. Modular competition driven by NMDA receptor subtypes in spike-timing-dependent plasticity. Gerkin RC, Lau PM, Nauen DW, Wang YT, Bi GQ. J Neurophysiol; 2007 Apr 10; 97(4):2851-62. PubMed ID: 17267756 [Abstract] [Full Text] [Related]
8. Fast and slow voltage-dependent dynamics of magnesium block in the NMDA receptor: the asymmetric trapping block model. Vargas-Caballero M, Robinson HP. J Neurosci; 2004 Jul 07; 24(27):6171-80. PubMed ID: 15240809 [Abstract] [Full Text] [Related]
9. Local learning rules: predicted influence of dendritic location on synaptic modification in spike-timing-dependent plasticity. Saudargiene A, Porr B, Wörgötter F. Biol Cybern; 2005 Feb 07; 92(2):128-38. PubMed ID: 15696313 [Abstract] [Full Text] [Related]
10. Non-fibrillar beta-amyloid abates spike-timing-dependent synaptic potentiation at excitatory synapses in layer 2/3 of the neocortex by targeting postsynaptic AMPA receptors. Shemer I, Holmgren C, Min R, Fülöp L, Zilberter M, Sousa KM, Farkas T, Härtig W, Penke B, Burnashev N, Tanila H, Zilberter Y, Harkany T. Eur J Neurosci; 2006 Apr 07; 23(8):2035-47. PubMed ID: 16630051 [Abstract] [Full Text] [Related]
11. Heterosynaptic metaplastic regulation of synaptic efficacy in CA1 pyramidal neurons of rat hippocampus. Le Ray D, Fernández De Sevilla D, Belén Porto A, Fuenzalida M, Buño W. Hippocampus; 2004 Apr 07; 14(8):1011-25. PubMed ID: 15390171 [Abstract] [Full Text] [Related]
12. Mechanistic and structural determinants of NMDA receptor voltage-dependent gating and slow Mg2+ unblock. Clarke RJ, Glasgow NG, Johnson JW. J Neurosci; 2013 Feb 27; 33(9):4140-50. PubMed ID: 23447622 [Abstract] [Full Text] [Related]
13. Mechanisms and significance of spike-timing dependent plasticity. Karmarkar UR, Najarian MT, Buonomano DV. Biol Cybern; 2002 Dec 27; 87(5-6):373-82. PubMed ID: 12461627 [Abstract] [Full Text] [Related]
14. Interaction of inhibition and triplets of excitatory spikes modulates the NMDA-R-mediated synaptic plasticity in a computational model of spike timing-dependent plasticity. Cutsuridis V. Hippocampus; 2013 Jan 27; 23(1):75-86. PubMed ID: 22851353 [Abstract] [Full Text] [Related]
16. SK channels regulate excitatory synaptic transmission and plasticity in the lateral amygdala. Faber ES, Delaney AJ, Sah P. Nat Neurosci; 2005 May 31; 8(5):635-41. PubMed ID: 15852010 [Abstract] [Full Text] [Related]
17. SK (KCa2) channels do not control somatic excitability in CA1 pyramidal neurons but can be activated by dendritic excitatory synapses and regulate their impact. Gu N, Hu H, Vervaeke K, Storm JF. J Neurophysiol; 2008 Nov 31; 100(5):2589-604. PubMed ID: 18684909 [Abstract] [Full Text] [Related]
18. Slow afterhyperpolarization governs the development of NMDA receptor-dependent afterdepolarization in CA1 pyramidal neurons during synaptic stimulation. Wu WW, Chan CS, Disterhoft JF. J Neurophysiol; 2004 Oct 31; 92(4):2346-56. PubMed ID: 15190096 [Abstract] [Full Text] [Related]
19. Spike-timing-dependent synaptic modification induced by natural spike trains. Froemke RC, Dan Y. Nature; 2002 Mar 28; 416(6879):433-8. PubMed ID: 11919633 [Abstract] [Full Text] [Related]
20. Dendritic coincidence detection of EPSPs and action potentials. Stuart GJ, Häusser M. Nat Neurosci; 2001 Jan 28; 4(1):63-71. PubMed ID: 11135646 [Abstract] [Full Text] [Related] Page: [Next] [New Search]