These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


148 related items for PubMed ID: 14755499

  • 1. Regulatory light chain phosphorylation increases eccentric contraction-induced injury in skinned fast-twitch fibers.
    Childers MK, McDonald KS.
    Muscle Nerve; 2004 Feb; 29(2):313-7. PubMed ID: 14755499
    [Abstract] [Full Text] [Related]

  • 2. Enhanced skeletal muscle contraction with myosin light chain phosphorylation by a calmodulin-sensing kinase.
    Ryder JW, Lau KS, Kamm KE, Stull JT.
    J Biol Chem; 2007 Jul 13; 282(28):20447-54. PubMed ID: 17504755
    [Abstract] [Full Text] [Related]

  • 3. Phosphorylation of the regulatory light chains of myosin affects Ca2+ sensitivity of skeletal muscle contraction.
    Szczesna D, Zhao J, Jones M, Zhi G, Stull J, Potter JD.
    J Appl Physiol (1985); 2002 Apr 13; 92(4):1661-70. PubMed ID: 11896035
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Myosin light chain kinase and myosin phosphorylation effect frequency-dependent potentiation of skeletal muscle contraction.
    Zhi G, Ryder JW, Huang J, Ding P, Chen Y, Zhao Y, Kamm KE, Stull JT.
    Proc Natl Acad Sci U S A; 2005 Nov 29; 102(48):17519-24. PubMed ID: 16299103
    [Abstract] [Full Text] [Related]

  • 7. Absence of myosin light chain phosphorylation and twitch potentiation in atrophied skeletal muscle.
    Tubman LA, Rassier DE, MacIntosh BR.
    Can J Physiol Pharmacol; 1996 Jun 29; 74(6):723-8. PubMed ID: 8909785
    [Abstract] [Full Text] [Related]

  • 8. Phosphorylation of myosin and twitch potentiation in fatigued skeletal muscle.
    Vandenboom R, Houston ME.
    Can J Physiol Pharmacol; 1996 Dec 29; 74(12):1315-21. PubMed ID: 9047041
    [Abstract] [Full Text] [Related]

  • 9. Regulatory light chain phosphorylation augments length-dependent contraction in PTU-treated rats.
    Breithaupt JJ, Pulcastro HC, Awinda PO, DeWitt DC, Tanner BCW.
    J Gen Physiol; 2019 Jan 07; 151(1):66-76. PubMed ID: 30523115
    [Abstract] [Full Text] [Related]

  • 10. The effect of myosin regulatory light chain phosphorylation on the frequency-dependent regulation of cardiac function.
    Dias FA, Walker LA, Arteaga GM, Walker JS, Vijayan K, Peña JR, Ke Y, Fogaca RT, Sanbe A, Robbins J, Wolska BM.
    J Mol Cell Cardiol; 2006 Aug 07; 41(2):330-9. PubMed ID: 16806259
    [Abstract] [Full Text] [Related]

  • 11. Theoretical and experimental investigation of calcium-contraction coupling in airway smooth muscle.
    Mbikou P, Fajmut A, Brumen M, Roux E.
    Cell Biochem Biophys; 2006 Aug 07; 46(3):233-52. PubMed ID: 17272850
    [Abstract] [Full Text] [Related]

  • 12. Analysis of the unfused tetanus course in fast motor units of the rat medial gastrocnemius muscle.
    Celichowski J, Pogrzebna M, Raikova RT.
    Arch Ital Biol; 2005 Feb 07; 143(1):51-63. PubMed ID: 15844668
    [Abstract] [Full Text] [Related]

  • 13. Myosin light chain kinase and the role of myosin light chain phosphorylation in skeletal muscle.
    Stull JT, Kamm KE, Vandenboom R.
    Arch Biochem Biophys; 2011 Jun 15; 510(2):120-8. PubMed ID: 21284933
    [Abstract] [Full Text] [Related]

  • 14. Myosin regulatory light chain modulates the Ca2+ dependence of the kinetics of tension development in skeletal muscle fibers.
    Patel JR, Diffee GM, Moss RL.
    Biophys J; 1996 May 15; 70(5):2333-40. PubMed ID: 9172757
    [Abstract] [Full Text] [Related]

  • 15. Potentiation in mouse lumbrical muscle without myosin light chain phosphorylation: is resting calcium responsible?
    Smith IC, Gittings W, Huang J, McMillan EM, Quadrilatero J, Tupling AR, Vandenboom R.
    J Gen Physiol; 2013 Mar 15; 141(3):297-308. PubMed ID: 23401574
    [Abstract] [Full Text] [Related]

  • 16. Changes in interfilament spacing mimic the effects of myosin regulatory light chain phosphorylation in rabbit psoas fibers.
    Yang Z, Stull JT, Levine RJ, Sweeney HL.
    J Struct Biol; 1998 Mar 15; 122(1-2):139-48. PubMed ID: 9724615
    [Abstract] [Full Text] [Related]

  • 17. Myosin light chain phosphorylation in vertebrate striated muscle: regulation and function.
    Sweeney HL, Bowman BF, Stull JT.
    Am J Physiol; 1993 May 15; 264(5 Pt 1):C1085-95. PubMed ID: 8388631
    [Abstract] [Full Text] [Related]

  • 18. Effects of myosin light chain phosphorylation on length-dependent myosin kinetics in skinned rat myocardium.
    Pulcastro HC, Awinda PO, Breithaupt JJ, Tanner BC.
    Arch Biochem Biophys; 2016 Jul 01; 601():56-68. PubMed ID: 26763941
    [Abstract] [Full Text] [Related]

  • 19. The effect of work cycle frequency on the potentiation of dynamic force in mouse fast twitch skeletal muscle.
    Caterini D, Gittings W, Huang J, Vandenboom R.
    J Exp Biol; 2011 Dec 01; 214(Pt 23):3915-23. PubMed ID: 22071182
    [Abstract] [Full Text] [Related]

  • 20. Basal myosin light chain phosphorylation is a determinant of Ca2+ sensitivity of force and activation dependence of the kinetics of myocardial force development.
    Olsson MC, Patel JR, Fitzsimons DP, Walker JW, Moss RL.
    Am J Physiol Heart Circ Physiol; 2004 Dec 01; 287(6):H2712-8. PubMed ID: 15331360
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.