These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
26. 5-Hydroxytryptamine action in the rat olfactory bulb: in vitro electrophysiological patch-clamp recordings of juxtaglomerular and mitral cells. Hardy A, Palouzier-Paulignan B, Duchamp A, Royet JP, Duchamp-Viret P. Neuroscience; 2005 Jul; 131(3):717-31. PubMed ID: 15730876 [Abstract] [Full Text] [Related]
27. Metabotropic glutamate receptors in the main olfactory bulb drive granule cell-mediated inhibition. Heinbockel T, Laaris N, Ennis M. J Neurophysiol; 2007 Jan; 97(1):858-70. PubMed ID: 17093122 [Abstract] [Full Text] [Related]
28. Functional Specialization of Interneuron Dendrites: Identification of Action Potential Initiation Zone in Axonless Olfactory Bulb Granule Cells. Pressler RT, Strowbridge BW. J Neurosci; 2019 Dec 04; 39(49):9674-9688. PubMed ID: 31662426 [Abstract] [Full Text] [Related]
29. Olfactory nerve stimulation-evoked mGluR1 slow potentials, oscillations, and calcium signaling in mouse olfactory bulb mitral cells. Yuan Q, Knöpfel T. J Neurophysiol; 2006 May 04; 95(5):3097-104. PubMed ID: 16467433 [Abstract] [Full Text] [Related]
30. Zinc and copper influence excitability of rat olfactory bulb neurons by multiple mechanisms. Horning MS, Trombley PQ. J Neurophysiol; 2001 Oct 04; 86(4):1652-60. PubMed ID: 11600628 [Abstract] [Full Text] [Related]
33. Control of on/off glomerular signaling by a local GABAergic microcircuit in the olfactory bulb. Gire DH, Schoppa NE. J Neurosci; 2009 Oct 28; 29(43):13454-64. PubMed ID: 19864558 [Abstract] [Full Text] [Related]
35. Intraglomerular lateral inhibition promotes spike timing variability in principal neurons of the olfactory bulb. Najac M, Sanz Diez A, Kumar A, Benito N, Charpak S, De Saint Jan D. J Neurosci; 2015 Mar 11; 35(10):4319-31. PubMed ID: 25762678 [Abstract] [Full Text] [Related]