These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


167 related items for PubMed ID: 14764085

  • 1. The unusual methanogenic seryl-tRNA synthetase recognizes tRNASer species from all three kingdoms of life.
    Bilokapic S, Korencic D, Söll D, Weygand-Durasevic I.
    Eur J Biochem; 2004 Feb; 271(4):694-702. PubMed ID: 14764085
    [Abstract] [Full Text] [Related]

  • 2. Superposition of a tRNASer acceptor stem microhelix into the seryl-tRNA synthetase complex.
    Förster C, Brauer AB, Fürste JP, Betzel Ch, Weber M, Cordes F, Erdmann VA.
    Biochem Biophys Res Commun; 2007 Oct 19; 362(2):415-8. PubMed ID: 17719008
    [Abstract] [Full Text] [Related]

  • 3. Shuffling of discrete tRNASer regions reveals differently utilized identity elements in yeast and methanogenic archaea.
    Gruic-Sovulj I, Jaric J, Dulic M, Cindric M, Weygand-Durasevic I.
    J Mol Biol; 2006 Aug 04; 361(1):128-39. PubMed ID: 16822522
    [Abstract] [Full Text] [Related]

  • 4. Crystallographic and mutational studies of seryl-tRNA synthetase from the archaeon Pyrococcus horikoshii.
    Itoh Y, Sekine S, Kuroishi C, Terada T, Shirouzu M, Kuramitsu S, Yokoyama S.
    RNA Biol; 2008 Aug 04; 5(3):169-77. PubMed ID: 18818520
    [Abstract] [Full Text] [Related]

  • 5. tRNA-dependent amino acid discrimination by yeast seryl-tRNA synthetase.
    Gruic-Sovulj I, Landeka I, Söll D, Weygand-Durasevic I.
    Eur J Biochem; 2002 Nov 04; 269(21):5271-9. PubMed ID: 12392560
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Sequence divergence of seryl-tRNA synthetases in archaea.
    Kim HS, Vothknecht UC, Hedderich R, Celic I, Söll D.
    J Bacteriol; 1998 Dec 04; 180(24):6446-9. PubMed ID: 9851985
    [Abstract] [Full Text] [Related]

  • 8. Escherichia coli seryl-tRNA synthetase recognizes tRNA(Ser) by its characteristic tertiary structure.
    Asahara H, Himeno H, Tamura K, Nameki N, Hasegawa T, Shimizu M.
    J Mol Biol; 1994 Feb 25; 236(3):738-48. PubMed ID: 8114091
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Differential modes of transfer RNASer recognition in Methanosarcina barkeri.
    Korencic D, Polycarpo C, Weygand-Durasevic I, Söll D.
    J Biol Chem; 2004 Nov 19; 279(47):48780-6. PubMed ID: 15364939
    [Abstract] [Full Text] [Related]

  • 11. Insights into substrate promiscuity of human seryl-tRNA synthetase.
    Holman KM, Puppala AK, Lee JW, Lee H, Simonović M.
    RNA; 2017 Nov 19; 23(11):1685-1699. PubMed ID: 28808125
    [Abstract] [Full Text] [Related]

  • 12. Contributions of discrete tRNA(Ser) domains to aminoacylation by E.coli seryl-tRNA synthetase: a kinetic analysis using model RNA substrates.
    Sampson JR, Saks ME.
    Nucleic Acids Res; 1993 Sep 25; 21(19):4467-75. PubMed ID: 8233780
    [Abstract] [Full Text] [Related]

  • 13. Minimal tRNA(Ser) and tRNA(Sec) substrates for human seryl-tRNA synthetase: contribution of tRNA domains to serylation and tertiary structure.
    Heckl M, Busch K, Gross HJ.
    FEBS Lett; 1998 May 15; 427(3):315-9. PubMed ID: 9637248
    [Abstract] [Full Text] [Related]

  • 14. Recognition between tRNASer and archaeal seryl-tRNA synthetases monitored by suppression of bacterial amber mutations.
    Lesjak S, Weygand-Durasevic I.
    FEMS Microbiol Lett; 2009 May 15; 294(1):111-8. PubMed ID: 19309487
    [Abstract] [Full Text] [Related]

  • 15. Divergence of selenocysteine tRNA recognition by archaeal and eukaryotic O-phosphoseryl-tRNASec kinase.
    Sherrer RL, Ho JM, Söll D.
    Nucleic Acids Res; 2008 Apr 15; 36(6):1871-80. PubMed ID: 18267971
    [Abstract] [Full Text] [Related]

  • 16. Selenocysteine tRNA and serine tRNA are aminoacylated by the same synthetase, but may manifest different identities with respect to the long extra arm.
    Ohama T, Yang DC, Hatfield DL.
    Arch Biochem Biophys; 1994 Dec 15; 315(2):293-301. PubMed ID: 7986071
    [Abstract] [Full Text] [Related]

  • 17. Yeast seryl-tRNA synthetase expressed in Escherichia coli recognizes bacterial serine-specific tRNAs in vivo.
    Weygand-Durasević I, Ban N, Jahn D, Söll D.
    Eur J Biochem; 1993 Jun 15; 214(3):869-77. PubMed ID: 7686490
    [Abstract] [Full Text] [Related]

  • 18. Variant minihelix RNAs reveal sequence-specific recognition of the helical tRNA(Ser) acceptor stem by E.coli seryl-tRNA synthetase.
    Saks ME, Sampson JR.
    EMBO J; 1996 Jun 03; 15(11):2843-9. PubMed ID: 8654382
    [Abstract] [Full Text] [Related]

  • 19. The long extra arms of human tRNA((Ser)Sec) and tRNA(Ser) function as major identify elements for serylation in an orientation-dependent, but not sequence-specific manner.
    Wu XQ, Gross HJ.
    Nucleic Acids Res; 1993 Dec 11; 21(24):5589-94. PubMed ID: 8284203
    [Abstract] [Full Text] [Related]

  • 20. Seryl-tRNA synthetase from Escherichia coli: functional evidence for cross-dimer tRNA binding during aminoacylation.
    Vincent C, Borel F, Willison JC, Leberman R, Härtlein M.
    Nucleic Acids Res; 1995 Apr 11; 23(7):1113-8. PubMed ID: 7537870
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.