These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
666 related items for PubMed ID: 14769405
1. Biology, persistence and detection of Cryptosporidium parvum and Cryptosporidium hominis oocyst. Carey CM, Lee H, Trevors JT. Water Res; 2004 Feb; 38(4):818-62. PubMed ID: 14769405 [Abstract] [Full Text] [Related]
2. Detection and discrimination of Cryptosporidium parvum and C. hominis in water samples by immunomagnetic separation-PCR. Ochiai Y, Takada C, Hosaka M. Appl Environ Microbiol; 2005 Feb; 71(2):898-903. PubMed ID: 15691946 [Abstract] [Full Text] [Related]
3. Detection and differentiation of Cryptosporidium oocysts in water by PCR-RFLP. Xiao L, Lal AA, Jiang J. Methods Mol Biol; 2004 Feb; 268():163-76. PubMed ID: 15156028 [Abstract] [Full Text] [Related]
4. [New methods for the diagnosis of Cryptosporidium and Giardia]. Cacciò SM. Parassitologia; 2004 Jun; 46(1-2):151-5. PubMed ID: 15305706 [Abstract] [Full Text] [Related]
5. Development of a sensitive detection system for Cryptosporidium in environmental samples. Ramirez NE, Sreevatsan S. Vet Parasitol; 2006 Mar 31; 136(3-4):201-13. PubMed ID: 16387443 [Abstract] [Full Text] [Related]
6. Evaluation of methods for improved detection of Cryptosporidium spp. in mussels (Mytilus californianus). Miller WA, Gardner IA, Atwill ER, Leutenegger CM, Miller MA, Hedrick RP, Melli AC, Barnes NM, Conrad PA. J Microbiol Methods; 2006 Jun 31; 65(3):367-79. PubMed ID: 16181691 [Abstract] [Full Text] [Related]
7. Comparison of most probable number-PCR and most probable number-foci detection method for quantifying infectious Cryptosporidium parvum oocysts in environmental samples. Carey CM, Lee H, Trevors JT. J Microbiol Methods; 2006 Nov 31; 67(2):363-72. PubMed ID: 16730821 [Abstract] [Full Text] [Related]
8. Presence of Cryptosporidium spp. and Giardia duodenalis through drinking water. Castro-Hermida JA, García-Presedo I, Almeida A, González-Warleta M, Correia Da Costa JM, Mezo M. Sci Total Environ; 2008 Nov 01; 405(1-3):45-53. PubMed ID: 18684490 [Abstract] [Full Text] [Related]
9. Drinking water treatment processes for removal of Cryptosporidium and Giardia. Betancourt WQ, Rose JB. Vet Parasitol; 2004 Dec 09; 126(1-2):219-34. PubMed ID: 15567586 [Abstract] [Full Text] [Related]
10. Sensitive and specific detection of Cryptosporidium species in PCR-negative samples by loop-mediated isothermal DNA amplification and confirmation of generated LAMP products by sequencing. Bakheit MA, Torra D, Palomino LA, Thekisoe OM, Mbati PA, Ongerth J, Karanis P. Vet Parasitol; 2008 Nov 25; 158(1-2):11-22. PubMed ID: 18940521 [Abstract] [Full Text] [Related]
11. Genotyping of Cryptosporidium parvum with microsatellite markers. Widmer G, Feng X, Tanriverdi S. Methods Mol Biol; 2004 Nov 25; 268():177-87. PubMed ID: 15156029 [Abstract] [Full Text] [Related]
12. A rapid method for extracting oocyst DNA from Cryptosporidium-positive human faeces for outbreak investigations. Nichols RA, Moore JE, Smith HV. J Microbiol Methods; 2006 Jun 25; 65(3):512-24. PubMed ID: 16290112 [Abstract] [Full Text] [Related]
13. Specific and quantitative detection and identification of Cryptosporidium hominis and C. parvum in clinical and environmental samples. Yang R, Murphy C, Song Y, Ng-Hublin J, Estcourt A, Hijjawi N, Chalmers R, Hadfield S, Bath A, Gordon C, Ryan U. Exp Parasitol; 2013 Sep 25; 135(1):142-7. PubMed ID: 23838581 [Abstract] [Full Text] [Related]
14. An immunomagnetic separation-reverse transcription polymerase chain reaction (IMS-RT-PCR) test for sensitive and rapid detection of viable waterborne Cryptosporidium parvum. Hallier-Soulier S, Guillot E. Environ Microbiol; 2003 Jul 25; 5(7):592-8. PubMed ID: 12823191 [Abstract] [Full Text] [Related]
15. Real-time nucleic acid sequence-based amplification (NASBA) assay targeting MIC1 for detection of Cryptosporidium parvum and Cryptosporidium hominis oocysts. Hønsvall BK, Robertson LJ. Exp Parasitol; 2017 Jan 25; 172():61-67. PubMed ID: 27998735 [Abstract] [Full Text] [Related]
16. Giardia and Cryptosporidium in inflowing water and harvested shellfish in a lagoon in Southern Italy. Giangaspero A, Cirillo R, Lacasella V, Lonigro A, Marangi M, Cavallo P, Berrilli F, Di Cave D, Brandonisio O. Parasitol Int; 2009 Mar 25; 58(1):12-7. PubMed ID: 18760378 [Abstract] [Full Text] [Related]
17. The prevalence and characterisation of Cryptosporidium spp. in beef abattoir water supplies. McEvoy JM, Duffy G, Moriarty EM, Lowery CJ, Sheridan JJ, Blair IS, McDowell DA. Water Res; 2005 Sep 25; 39(15):3697-703. PubMed ID: 16095657 [Abstract] [Full Text] [Related]
18. Molecular fingerprinting of Cryptosporidium oocysts isolated during water monitoring. Nichols RA, Campbell BM, Smith HV. Appl Environ Microbiol; 2006 Aug 25; 72(8):5428-35. PubMed ID: 16885295 [Abstract] [Full Text] [Related]
19. Detection of Cryptosporidium species and sources of contamination with Cryptosporidium hominis during a waterborne outbreak in north west Wales. Chalmers RM, Robinson G, Elwin K, Hadfield SJ, Thomas E, Watkins J, Casemore D, Kay D. J Water Health; 2010 Jun 25; 8(2):311-25. PubMed ID: 20154394 [Abstract] [Full Text] [Related]
20. Clams (Corbicula fluminea) as bioindicators of fecal contamination with Cryptosporidium and Giardia spp. in freshwater ecosystems in California. Miller WA, Atwill ER, Gardner IA, Miller MA, Fritz HM, Hedrick RP, Melli AC, Barnes NM, Conrad PA. Int J Parasitol; 2005 May 25; 35(6):673-84. PubMed ID: 15862580 [Abstract] [Full Text] [Related] Page: [Next] [New Search]