These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Changes in secondary metabolism and deposition of an unusual lignin in the ref8 mutant of Arabidopsis. Franke R, Hemm MR, Denault JW, Ruegger MO, Humphreys JM, Chapple C. Plant J; 2002 Apr; 30(1):47-59. PubMed ID: 11967092 [Abstract] [Full Text] [Related]
6. Sinapic acid ester metabolism in wild type and a sinapoylglucose-accumulating mutant of arabidopsis. Lorenzen M, Racicot V, Strack D, Chapple C. Plant Physiol; 1996 Dec; 112(4):1625-30. PubMed ID: 8972602 [Abstract] [Full Text] [Related]
7. Nitrate reductase- and nitric oxide-dependent activation of sinapoylglucose:malate sinapoyltransferase in leaves of Arabidopsis thaliana. Santos-Filho PR, Vitor SC, Frungillo L, Saviani EE, Oliveira HC, Salgado I. Plant Cell Physiol; 2012 Sep; 53(9):1607-16. PubMed ID: 22833666 [Abstract] [Full Text] [Related]
8. Regulation of ferulate-5-hydroxylase expression in Arabidopsis in the context of sinapate ester biosynthesis. Ruegger M, Meyer K, Cusumano JC, Chapple C. Plant Physiol; 1999 Jan; 119(1):101-10. PubMed ID: 9880351 [Abstract] [Full Text] [Related]
9. Loss of FERULATE 5-HYDROXYLASE Leads to Mediator-Dependent Inhibition of Soluble Phenylpropanoid Biosynthesis in Arabidopsis. Anderson NA, Bonawitz ND, Nyffeler K, Chapple C. Plant Physiol; 2015 Nov; 169(3):1557-67. PubMed ID: 26048881 [Abstract] [Full Text] [Related]
11. Sinapic acid or its derivatives interfere with abscisic acid homeostasis during Arabidopsis thaliana seed germination. Bi B, Tang J, Han S, Guo J, Miao Y. BMC Plant Biol; 2017 Jun 06; 17(1):99. PubMed ID: 28587634 [Abstract] [Full Text] [Related]
13. Dynamic metabolic changes in seeds and seedlings of Brassica napus (oilseed rape) suppressing UGT84A9 reveal plasticity and molecular regulation of the phenylpropanoid pathway. Hettwer K, Böttcher C, Frolov A, Mittasch J, Albert A, von Roepenack-Lahaye E, Strack D, Milkowski C. Phytochemistry; 2016 Apr 06; 124():46-57. PubMed ID: 26833384 [Abstract] [Full Text] [Related]
14. The Arabidopsis ref2 mutant is defective in the gene encoding CYP83A1 and shows both phenylpropanoid and glucosinolate phenotypes. Hemm MR, Ruegger MO, Chapple C. Plant Cell; 2003 Jan 06; 15(1):179-94. PubMed ID: 12509530 [Abstract] [Full Text] [Related]
16. The hyper-fluorescent trichome phenotype of the brt1 mutant of Arabidopsis is the result of a defect in a sinapic acid: UDPG glucosyltransferase. Sinlapadech T, Stout J, Ruegger MO, Deak M, Chapple C. Plant J; 2007 Feb 06; 49(4):655-68. PubMed ID: 17217457 [Abstract] [Full Text] [Related]
17. Soluble phenylpropanoids are involved in the defense response of Arabidopsis against Verticillium longisporum. König S, Feussner K, Kaever A, Landesfeind M, Thurow C, Karlovsky P, Gatz C, Polle A, Feussner I. New Phytol; 2014 May 06; 202(3):823-837. PubMed ID: 24483326 [Abstract] [Full Text] [Related]
18. Plant sunscreens in the UV-B: ultraviolet spectroscopy of jet-cooled sinapoyl malate, sinapic acid, and sinapate ester derivatives. Dean JC, Kusaka R, Walsh PS, Allais F, Zwier TS. J Am Chem Soc; 2014 Oct 22; 136(42):14780-95. PubMed ID: 25295994 [Abstract] [Full Text] [Related]
19. The maize ZmMYB42 represses the phenylpropanoid pathway and affects the cell wall structure, composition and degradability in Arabidopsis thaliana. Sonbol FM, Fornalé S, Capellades M, Encina A, Touriño S, Torres JL, Rovira P, Ruel K, Puigdomènech P, Rigau J, Caparrós-Ruiz D. Plant Mol Biol; 2009 Jun 22; 70(3):283-96. PubMed ID: 19238561 [Abstract] [Full Text] [Related]