These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
135 related items for PubMed ID: 1479339
1. Pyruvate catabolism during transient state conditions in chemostat cultures of Enterococcus faecalis NCTC 775: importance of internal pyruvate concentrations and NADH/NAD+ ratios. Snoep JL, de Graef MR, Teixeira de Mattos MJ, Neijssel OM. J Gen Microbiol; 1992 Oct; 138(10):2015-20. PubMed ID: 1479339 [Abstract] [Full Text] [Related]
2. Involvement of pyruvate dehydrogenase in product formation in pyruvate-limited anaerobic chemostat cultures of Enterococcus faecalis NCTC 775. Snoep JL, Teixeira de Mattos MJ, Postma PW, Neijssel OM. Arch Microbiol; 1990 Oct; 154(1):50-5. PubMed ID: 2118752 [Abstract] [Full Text] [Related]
3. The role of lipoic acid in product formation by Enterococcus faecalis NCTC 775 and reconstitution in vivo and in vitro of the pyruvate dehydrogenase complex. Snoep JL, van Bommel M, Lubbers F, Teixeira de Mattos MJ, Neijssel OM. J Gen Microbiol; 1993 Jun; 139 Pt 6():1325-9. PubMed ID: 8360624 [Abstract] [Full Text] [Related]
4. Effect of culture conditions on the NADH/NAD ratio and total amounts of NAD(H) in chemostat cultures of Enterococcus faecalis NCTC 775. Snoep JL, de Graef MR, Teixeira de Mattos MJ, Neijssel OM. FEMS Microbiol Lett; 1994 Mar 01; 116(3):263-7. PubMed ID: 8181697 [Abstract] [Full Text] [Related]
5. The steady-state internal redox state (NADH/NAD) reflects the external redox state and is correlated with catabolic adaptation in Escherichia coli. de Graef MR, Alexeeva S, Snoep JL, Teixeira de Mattos MJ. J Bacteriol; 1999 Apr 01; 181(8):2351-7. PubMed ID: 10197995 [Abstract] [Full Text] [Related]
6. Pyruvate formate-lyase is essential for fumarate-independent anaerobic glycerol utilization in the Enterococcus faecalis strain W11. Doi Y, Ikegami Y. J Bacteriol; 2014 Jul 01; 196(13):2472-80. PubMed ID: 24769696 [Abstract] [Full Text] [Related]
7. Differences in sensitivity to NADH of purified pyruvate dehydrogenase complexes of Enterococcus faecalis, Lactococcus lactis, Azotobacter vinelandii and Escherichia coli: implications for their activity in vivo. Snoep JL, de Graef MR, Westphal AH, de Kok A, Teixeira de Mattos MJ, Neijssel OM. FEMS Microbiol Lett; 1993 Dec 15; 114(3):279-83. PubMed ID: 8288104 [Abstract] [Full Text] [Related]
8. Requirement of ArcA for redox regulation in Escherichia coli under microaerobic but not anaerobic or aerobic conditions. Alexeeva S, Hellingwerf KJ, Teixeira de Mattos MJ. J Bacteriol; 2003 Jan 15; 185(1):204-9. PubMed ID: 12486057 [Abstract] [Full Text] [Related]
9. Glucose metabolism, enzymic analysis and product formation in chemostat culture of Hanseniaspora uvarum. Venturin C, Boze H, Moulin G, Galzy P. Yeast; 1995 Apr 15; 11(4):327-36. PubMed ID: 7785333 [Abstract] [Full Text] [Related]
10. Doubling the catabolic reducing power (NADH) output of Escherichia coli fermentation for production of reduced products. Zhou S, Iverson AG, Grayburn WS. Biotechnol Prog; 2010 Apr 15; 26(1):45-51. PubMed ID: 19862803 [Abstract] [Full Text] [Related]
11. Regulation of pyruvate metabolism in chemostat cultures of Kluyveromyces lactis CBS 2359. Zeeman AM, Kuyper M, Pronk JT, van Dijken JP, Steensma HY. Yeast; 2000 May 15; 16(7):611-20. PubMed ID: 10806423 [Abstract] [Full Text] [Related]
12. Isolation and characterisation of the pyruvate dehydrogenase complex of anaerobically grown Enterococcus faecalis NCTC 775. Snoep JL, Westphal AH, Benen JA, Teixeira de Mattos MJ, Neijssel OM, de Kok A. Eur J Biochem; 1992 Jan 15; 203(1-2):245-50. PubMed ID: 1730230 [Abstract] [Full Text] [Related]
13. Cofactor engineering: a novel approach to metabolic engineering in Lactococcus lactis by controlled expression of NADH oxidase. Lopez de Felipe F, Kleerebezem M, de Vos WM, Hugenholtz J. J Bacteriol; 1998 Aug 15; 180(15):3804-8. PubMed ID: 9683475 [Abstract] [Full Text] [Related]
14. Synthesis of lipoic acid by Streptococcus faecalis 10C1 and end-products produced anaerobically from low concentrations of glucose. Johnson MG, Collins EB. J Gen Microbiol; 1973 Sep 15; 78(1):47-55. PubMed ID: 4202055 [No Abstract] [Full Text] [Related]
15. Evidence for oxidative thiolytic cleavage of acetoin in Pelobacter carbinolicus analogous to aerobic oxidative decarboxylation of pyruvate. Oppermann FB, Steinbüchel A, Schlegel HG. FEMS Microbiol Lett; 1989 Jul 01; 51(1):113-8. PubMed ID: 2792735 [Abstract] [Full Text] [Related]
16. Regulation of Clostridium acetobutylicum metabolism as revealed by mixed-substrate steady-state continuous cultures: role of NADH/NAD ratio and ATP pool. Girbal L, Soucaille P. J Bacteriol; 1994 Nov 01; 176(21):6433-8. PubMed ID: 7961393 [Abstract] [Full Text] [Related]
17. Mutants of Streptococcus faecalis concerning pyruvate dehydrogenation. Yamazaki A, Watanabe K, Nishimura Y, Kamihara T. FEBS Lett; 1976 May 01; 64(2):364-8. PubMed ID: 819303 [No Abstract] [Full Text] [Related]
19. Balance between aerobic and anaerobic metabolites production of Amycolatopsis orientalis depending on initial glucose concentration. Ayar-Kayali H, Tarhan L. Prep Biochem Biotechnol; 2007 May 01; 37(3):247-63. PubMed ID: 17516254 [Abstract] [Full Text] [Related]