These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


295 related items for PubMed ID: 1479340

  • 1. Physiological analysis of mutants of Saccharomyces cerevisiae impaired in sulphate assimilation.
    Thomas D, Barbey R, Henry D, Surdin-Kerjan Y.
    J Gen Microbiol; 1992 Oct; 138(10):2021-8. PubMed ID: 1479340
    [Abstract] [Full Text] [Related]

  • 2. Isolation of sulphate transport defective mutants of Candida utilis: further evidence for a common transport system for sulphate, sulphite and thiosulphate.
    García M, Benítez J, Delgado J, Kotyk A.
    Folia Microbiol (Praha); 1983 Oct; 28(1):1-5. PubMed ID: 6682073
    [Abstract] [Full Text] [Related]

  • 3. [Growth of Ectothiorhodospira shaposhnikovii on media with various sulfur compounds].
    Kondrat'eva EN, Krasil'nikova EN.
    Mikrobiologiia; 1979 Oct; 48(2):194-201. PubMed ID: 440157
    [Abstract] [Full Text] [Related]

  • 4. Increasing sulphite formation in Saccharomyces cerevisiae by overexpression of MET14 and SSU1.
    Donalies UE, Stahl U.
    Yeast; 2002 Apr; 19(6):475-84. PubMed ID: 11921096
    [Abstract] [Full Text] [Related]

  • 5. Sulphate production by Paracoccus pantotrophus ATCC 35512 from different sulphur substrates: sodium thiosulphate, sulphite and sulphide.
    Meyer DD, Andrino FG, Possedente de Lira S, Fornaro A, Corção G, Brandelli A.
    Environ Technol; 2016 Apr; 37(6):768-73. PubMed ID: 26269005
    [Abstract] [Full Text] [Related]

  • 6. The reversibility of dissimilatory sulphate reduction and the cell-internal multi-step reduction of sulphite to sulphide: insights from the oxygen isotope composition of sulphate.
    Brunner B, Einsiedl F, Arnold GL, Müller I, Templer S, Bernasconi SM.
    Isotopes Environ Health Stud; 2012 Apr; 48(1):33-54. PubMed ID: 22128782
    [Abstract] [Full Text] [Related]

  • 7. Ultradian metabolic oscillation of Saccharomyces cerevisiae during aerobic continuous culture: hydrogen sulphide, a population synchronizer, is produced by sulphite reductase.
    Sohn H, Kuriyama H.
    Yeast; 2001 Jan 30; 18(2):125-35. PubMed ID: 11169755
    [Abstract] [Full Text] [Related]

  • 8. Sulphur flux through the sulphate assimilation pathway is differently controlled by adenosine 5'-phosphosulphate reductase under stress and in transgenic poplar plants overexpressing gamma-ECS, SO, or APR.
    Scheerer U, Haensch R, Mendel RR, Kopriva S, Rennenberg H, Herschbach C.
    J Exp Bot; 2010 Jan 30; 61(2):609-22. PubMed ID: 19923196
    [Abstract] [Full Text] [Related]

  • 9. Biosynthesis of sulphur amino acids in Saccharomyces cerevisiae: regulatory roles of methionine and S-adenosylmethionine reassessed.
    Paszewski A, Ono BI.
    Curr Genet; 1992 Oct 30; 22(4):273-5. PubMed ID: 1394507
    [Abstract] [Full Text] [Related]

  • 10. O2-dependent methionine auxotrophy in Cu,Zn superoxide dismutase-deficient mutants of Saccharomyces cerevisiae.
    Chang EC, Kosman DJ.
    J Bacteriol; 1990 Apr 30; 172(4):1840-5. PubMed ID: 2180907
    [Abstract] [Full Text] [Related]

  • 11. The Complete Pathway for Thiosulfate Utilization in Saccharomyces cerevisiae.
    Chen Z, Zhang X, Li H, Liu H, Xia Y, Xun L.
    Appl Environ Microbiol; 2018 Nov 15; 84(22):. PubMed ID: 30217845
    [Abstract] [Full Text] [Related]

  • 12. Isolation and characterization of alkaliphilic, chemolithoautotrophic, sulphur-oxidizing bacteria.
    Sorokin DY, Robertson LA, Kuenen JG.
    Antonie Van Leeuwenhoek; 2000 Apr 15; 77(3):251-62. PubMed ID: 15188891
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Inorganic sulphate, sulphite and sulphide as sulphur donors in the biosynthesis of sulphur amino acids in germ-free and conventional rats.
    Huovinen JA, Gustafsson BE.
    Biochim Biophys Acta; 1967 Apr 25; 136(3):441-7. PubMed ID: 6048261
    [No Abstract] [Full Text] [Related]

  • 15. Dynamics of oxidation of inorganic sulphur compounds in upper soil horizons of spruce forests.
    Lettl A, Langkramer O, Lochman V.
    Folia Microbiol (Praha); 1981 Apr 25; 26(1):24-8. PubMed ID: 7203284
    [Abstract] [Full Text] [Related]

  • 16. At least four regulatory genes control sulphur metabolite repression in Aspergillus nidulans.
    Natorff R, Balińska M, Paszewski A.
    Mol Gen Genet; 1993 Apr 25; 238(1-2):185-92. PubMed ID: 8479426
    [Abstract] [Full Text] [Related]

  • 17. Age-related differences in the metabolism of sulphite to sulphate and in the identification of sulphur trioxide radical in human polymorphonuclear leukocytes.
    Constantin D, Bini A, Meletti E, Moldeus P, Monti D, Tomasi A.
    Mech Ageing Dev; 1996 Jul 05; 88(1-2):95-109. PubMed ID: 8803926
    [Abstract] [Full Text] [Related]

  • 18. [Auxotrophy and utilization of oxidized and reduced mineral sulfur forms by Brevundimonas diminuta strains].
    Smirnov VV, Kiprianova EA, Babich LV.
    Mikrobiol Z; 2001 Jul 05; 63(5):27-33. PubMed ID: 11785417
    [Abstract] [Full Text] [Related]

  • 19. Sulphate transport in Candida utilis.
    Benítez JA, Alonso A, Delgado J, Kotyk A.
    Folia Microbiol (Praha); 1983 Jul 05; 28(1):6-11. PubMed ID: 6682074
    [Abstract] [Full Text] [Related]

  • 20. Two divergent MET10 genes, one from Saccharomyces cerevisiae and one from Saccharomyces carlsbergensis, encode the alpha subunit of sulfite reductase and specify potential binding sites for FAD and NADPH.
    Hansen J, Cherest H, Kielland-Brandt MC.
    J Bacteriol; 1994 Oct 05; 176(19):6050-8. PubMed ID: 7928966
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 15.