These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


480 related items for PubMed ID: 1481902

  • 1. Blood viscosity in tube flow: dependence on diameter and hematocrit.
    Pries AR, Neuhaus D, Gaehtgens P.
    Am J Physiol; 1992 Dec; 263(6 Pt 2):H1770-8. PubMed ID: 1481902
    [Abstract] [Full Text] [Related]

  • 2. Effect of shear rate variation on apparent viscosity of human blood in tubes of 29 to 94 microns diameter.
    Reinke W, Johnson PC, Gaehtgens P.
    Circ Res; 1986 Aug; 59(2):124-32. PubMed ID: 3742742
    [Abstract] [Full Text] [Related]

  • 3. Osmolality-mediated Fahraeus and Fahraeus-Lindqvist effects for human RBC suspensions.
    McKay CB, Meiselman HJ.
    Am J Physiol; 1988 Feb; 254(2 Pt 2):H238-49. PubMed ID: 3344815
    [Abstract] [Full Text] [Related]

  • 4. Viscosity reduction of red blood cells from preterm and full-term neonates and adults in narrow tubes (Fahraeus-Lindqvist effect).
    Zilow EP, Linderkamp O.
    Pediatr Res; 1989 Jun; 25(6):595-9. PubMed ID: 2740150
    [Abstract] [Full Text] [Related]

  • 5. Dynamics of blood flow: modeling of Fåhraeus and Fåhraeus-Lindqvist effects using a shear-induced red blood cell migration model.
    Chebbi R.
    J Biol Phys; 2018 Dec; 44(4):591-603. PubMed ID: 30219980
    [Abstract] [Full Text] [Related]

  • 6. A semi-empirical model of apparent blood viscosity as a function of vessel diameter and discharge hematocrit.
    Kiani MF, Hudetz AG.
    Biorheology; 1991 Dec; 28(1-2):65-73. PubMed ID: 2049533
    [Abstract] [Full Text] [Related]

  • 7. Blood viscosity and optimal hematocrit in narrow tubes.
    Stadler AA, Zilow EP, Linderkamp O.
    Biorheology; 1990 Dec; 27(5):779-88. PubMed ID: 2271768
    [Abstract] [Full Text] [Related]

  • 8. Fåhraeus and Fåhreaus-Lindqvist effects for neonatal and adult red blood cell suspensions.
    McKay CB, Linderkamp O, Meiselman HJ.
    Pediatr Res; 1993 Oct; 34(4):538-43. PubMed ID: 8255690
    [Abstract] [Full Text] [Related]

  • 9. Blood viscosity and optimal hematocrit in preterm and full-term neonates in 50- to 500-micrometer tubes.
    Linderkamp O, Stadler AA, Zilow EP.
    Pediatr Res; 1992 Jul; 32(1):97-102. PubMed ID: 1635852
    [Abstract] [Full Text] [Related]

  • 10. Mathematical modelling of the cell-depleted peripheral layer in the steady flow of blood in a tube.
    Moyers-Gonzalez MA, Owens RG.
    Biorheology; 2010 Jul; 47(1):39-71. PubMed ID: 20448297
    [Abstract] [Full Text] [Related]

  • 11. Blood flow in microvascular networks. Experiments and simulation.
    Pries AR, Secomb TW, Gaehtgens P, Gross JF.
    Circ Res; 1990 Oct; 67(4):826-34. PubMed ID: 2208609
    [Abstract] [Full Text] [Related]

  • 12. Using a classic paper by Robin Fahraeus and Torsten Lindqvist to teach basic hemorheology.
    Toksvang LN, Berg RM.
    Adv Physiol Educ; 2013 Jun; 37(2):129-33. PubMed ID: 23728130
    [Abstract] [Full Text] [Related]

  • 13. Blood viscosity in small tubes: effect of shear rate, aggregation, and sedimentation.
    Reinke W, Gaehtgens P, Johnson PC.
    Am J Physiol; 1987 Sep; 253(3 Pt 2):H540-7. PubMed ID: 3631291
    [Abstract] [Full Text] [Related]

  • 14. Microvascular blood viscosity in vivo and the endothelial surface layer.
    Pries AR, Secomb TW.
    Am J Physiol Heart Circ Physiol; 2005 Dec; 289(6):H2657-64. PubMed ID: 16040719
    [Abstract] [Full Text] [Related]

  • 15. Resistance to blood flow in microvessels in vivo.
    Pries AR, Secomb TW, Gessner T, Sperandio MB, Gross JF, Gaehtgens P.
    Circ Res; 1994 Nov; 75(5):904-15. PubMed ID: 7923637
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Viscous resistance to blood flow in solid tumors: effect of hematocrit on intratumor blood viscosity.
    Sevick EM, Jain RK.
    Cancer Res; 1989 Jul 01; 49(13):3513-9. PubMed ID: 2731173
    [Abstract] [Full Text] [Related]

  • 18. A theoretical model for the Fåhræus effect in medium-large microvessels.
    Farina A, Fasano A, Rosso F.
    J Theor Biol; 2023 Feb 07; 558():111355. PubMed ID: 36402201
    [Abstract] [Full Text] [Related]

  • 19. Osmolality- and hematocrit-mediated flow behavior of RBC suspensions in 33 micrometer ID tubes.
    McKay CB, Meiselman HJ.
    Biorheology; 1989 Feb 07; 26(4):863-74. PubMed ID: 2611376
    [Abstract] [Full Text] [Related]

  • 20. Hematocrit fluctuations within capillary tubes and estimation of Fåhraeus effect.
    Secomb TW, Pries AR, Gaehtgens P.
    Int J Microcirc Clin Exp; 1987 Feb 07; 5(4):335-45. PubMed ID: 3557819
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 24.