These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


126 related items for PubMed ID: 14871755

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Photosynthetic adjustment in field-grown ponderosa pine trees after six years of exposure to elevated CO(2).
    Tissue DT, Griffin KL, Ball JT.
    Tree Physiol; 1999 Apr; 19(4_5):221-228. PubMed ID: 12651564
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Compensatory responses of CO2 exchange and biomass allocation and their effects on the relative growth rate of ponderosa pine in different CO2 and temperature regimes.
    Callaway RM, DeLucia EH, Thomas EM, Schlesinger WH.
    Oecologia; 1994 Jul; 98(2):159-166. PubMed ID: 28313973
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Woody-tissue respiration for Simarouba amara and Minquartia guianensis, two tropical wet forest trees with different growth habits.
    Ryan MG, Hubbard RM, Clark DA, Sanford RL.
    Oecologia; 1994 Dec; 100(3):213-220. PubMed ID: 28307003
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Carbon budget of Pinus sylvestris saplings after four years of exposure to elevated atmospheric carbon dioxide concentration.
    Janssens IA, Medlyn B, Gielen B, Laureysens I, Jach ME, Van Hove D, Ceulemans R.
    Tree Physiol; 2005 Mar; 25(3):325-37. PubMed ID: 15631981
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Effects of elevated carbon dioxide concentration and temperature on needle growth, respiration and carbohydrate status in field-grown Scots pines during the needle expansion period.
    Zha T, Ryyppö A, Wang KY, Kellomäki S.
    Tree Physiol; 2001 Nov; 21(17):1279-87. PubMed ID: 11696415
    [Abstract] [Full Text] [Related]

  • 17. Growth and physiological responses of Pinus ponderosa Dougl ex P. Laws. to long-term elevated CO(2) concentrations.
    Surano KA, Daley PF, Houpis JL, Shinn JH, Helms JA, Palassou RJ, Costella MP.
    Tree Physiol; 1986 Dec; 2(1_2_3):243-259. PubMed ID: 14975858
    [Abstract] [Full Text] [Related]

  • 18. Physiological responses of ponderosa pine in western Montana to thinning, prescribed fire and burning season.
    Sala A, Peters GD, McIntyre LR, Harrington MG.
    Tree Physiol; 2005 Mar; 25(3):339-48. PubMed ID: 15631982
    [Abstract] [Full Text] [Related]

  • 19. Seasonal variation in respiration of 1-year-old shoots of scots pine exposed to elevated carbon dioxide and temperature for 4 years.
    Zha TS, Kellomaki S, Wang KY.
    Ann Bot; 2003 Jul; 92(1):89-96. PubMed ID: 12763759
    [Abstract] [Full Text] [Related]

  • 20. Growth, respiration and nitrogen content in needles of Scots pine exposed to elevated ozone and carbon dioxide in the field.
    Kellomäki S, Wang KY.
    Environ Pollut; 1998 Jul; 101(2):263-74. PubMed ID: 15093088
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.