These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
97 related items for PubMed ID: 1493886
41. Combined pH and high hydrostatic pressure effects on Lactococcus starter cultures and Candida spoilage yeasts in a fermented milk test system during cold storage. Daryaei H, Coventry J, Versteeg C, Sherkat F. Food Microbiol; 2010 Dec; 27(8):1051-6. PubMed ID: 20832684 [Abstract] [Full Text] [Related]
42. Uptake of wetting method in Africa to reduce cyanide poisoning and konzo from cassava. Bradbury JH, Cliff J, Denton IC. Food Chem Toxicol; 2011 Mar; 49(3):539-42. PubMed ID: 20510334 [Abstract] [Full Text] [Related]
43. Microbiological and biochemical profile of cv. Conservolea naturally black olives during controlled fermentation with selected strains of lactic acid bacteria. Panagou EZ, Schillinger U, Franz CM, Nychas GJ. Food Microbiol; 2008 Apr; 25(2):348-58. PubMed ID: 18206777 [Abstract] [Full Text] [Related]
48. Cyanide Content of Cassava Food Products Available in Australia. Quinn AA, Myrans H, Gleadow RM. Foods; 2022 May 11; 11(10):. PubMed ID: 35626954 [Abstract] [Full Text] [Related]
49. Effect of hot water treatments on the safety and quality of Fusarium-infected malting barley. Kottapalli B, Wolf-Hall CE. Int J Food Microbiol; 2008 May 31; 124(2):171-8. PubMed ID: 18472174 [Abstract] [Full Text] [Related]
50. Comparison of the effects of cassava (Manihot esculenta Crantz) organic cyanide and inorganic cyanide on muscle and bone development in a Nigerian breed of dog. Ibebunjo C, Kamalu BP, Ihemelandu EC. Br J Nutr; 1992 Sep 31; 68(2):483-91. PubMed ID: 1445827 [Abstract] [Full Text] [Related]
51. Physical losses could partially explain modest carotenoid retention in dried food products from biofortified cassava. Bechoff A, Tomlins KI, Chijioke U, Ilona P, Westby A, Boy E. PLoS One; 2018 Sep 31; 13(3):e0194402. PubMed ID: 29561886 [Abstract] [Full Text] [Related]
52. Interactive effects of temperature and drought on cassava growth and toxicity: implications for food security? Brown AL, Cavagnaro TR, Gleadow R, Miller RE. Glob Chang Biol; 2016 Oct 31; 22(10):3461-73. PubMed ID: 27252148 [Abstract] [Full Text] [Related]
53. The stability of stored gari. Sanni MO. Int J Food Microbiol; 1996 Feb 31; 29(1):119-23. PubMed ID: 8722193 [Abstract] [Full Text] [Related]
57. Physicochemical Composition and Antioxidant Activity of Five Gari Processed from Cassava Roots (Manihot esculenta Crantz) Harvested at Two Different Maturity Stages and Two Seasons. Laya A. Biomed Res Int; 2023 May 31; 2023():4779424. PubMed ID: 37920786 [Abstract] [Full Text] [Related]
58. Cyanogenic potential of cassava flour: field trial in Mozambique of a simple kit. Cardoso AP, Ernesto M, Cliff J, Egan SV, Bradbury JH. Int J Food Sci Nutr; 1998 Mar 31; 49(2):93-9. PubMed ID: 9713579 [Abstract] [Full Text] [Related]
59. Cassava fermentation and associated changes in physicochemical and functional properties. Moorthy SN, Mathew G. Crit Rev Food Sci Nutr; 1998 Feb 31; 38(2):73-121. PubMed ID: 9526681 [Abstract] [Full Text] [Related]
60. Effect of varied fermentation periods on the diabetogenic potential of toasted cassava granules. Ihedioha JI, Chineme CN. Plant Foods Hum Nutr; 1999 Feb 31; 53(2):159-68. PubMed ID: 10472793 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]