These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


152 related items for PubMed ID: 14960

  • 1. Proton magnetic relaxation of aspartate transcarbamylase - succinate complexes.
    Ireland CB, Schmidt PG.
    J Biol Chem; 1977 Apr 10; 252(7):2262-70. PubMed ID: 14960
    [Abstract] [Full Text] [Related]

  • 2. Nuclear magnetic resonance study of ligand binding to Mn-aspartate transcarbamylase.
    Fan S, Harrison LW, Hammes GG.
    Biochemistry; 1975 May 20; 14(10):2219-24. PubMed ID: 807235
    [Abstract] [Full Text] [Related]

  • 3. HNMR of succinate binding to aspartate transcarbamylase. A comparison of results in D2O and H2O.
    Mosberg HI, Beard CB, Schmidt PG.
    Biophys Chem; 1976 Dec 20; 6(1):1-8. PubMed ID: 13874
    [Abstract] [Full Text] [Related]

  • 4. Evidence from 13C NMR for protonation of carbamyl-P and N-(phosphonacetyl)-L-aspartate in the active site of aspartate transcarbamylase.
    Roberts MF, Opella SJ, Schaffer MH, Phillips HM, Stark GR.
    J Biol Chem; 1976 Oct 10; 251(19):5976-85. PubMed ID: 9410
    [Abstract] [Full Text] [Related]

  • 5. Cooperative binding of the bisubstrate analog N-(phosphonacetyl)-L-aspartate to aspartate transcarbamoylase and the heterotropic effects of ATP and CTP.
    Newell JO, Markby DW, Schachman HK.
    J Biol Chem; 1989 Feb 15; 264(5):2476-81. PubMed ID: 2644262
    [Abstract] [Full Text] [Related]

  • 6. Subunit interactions in aspartate transcarbamylase. The interaction between catalytic and regulatory subunits and the effect of ligands.
    Chan WW.
    J Biol Chem; 1975 Jan 25; 250(2):661-7. PubMed ID: 1089646
    [Abstract] [Full Text] [Related]

  • 7. An effect of enzyme and ligand concentration on the state of aggregation of aspartate transcarbamylase of E. coli: I. The binding of CTP and ATP to the enzyme.
    Cook RA, Milne JA.
    Can J Biochem; 1977 Apr 25; 55(4):346-58. PubMed ID: 322826
    [Abstract] [Full Text] [Related]

  • 8. Heterogeneity of sites in isolated catalytic subunits of aspartate transcarbamoylase.
    Suter P, Rosenbusch JP.
    Eur J Biochem; 1976 Nov 01; 70(1):191-6. PubMed ID: 795648
    [Abstract] [Full Text] [Related]

  • 9. Changes in the hydrogen exchange kinetics of Escherichia coli aspartate transcarbamylase produced by effector binding and subunit association.
    Lennick M, Allewell NM.
    Proc Natl Acad Sci U S A; 1981 Nov 01; 78(11):6759-63. PubMed ID: 7031660
    [Abstract] [Full Text] [Related]

  • 10. Effects of ATP and CTP on the conformation of the regulatory subunit of Escherichia coli aspartate transcarbamylase in solution: a medium-resolution hydrogen exchange study.
    Mallikarachchi D, Burz DS, Allewell NM.
    Biochemistry; 1989 Jun 27; 28(13):5386-91. PubMed ID: 2673345
    [Abstract] [Full Text] [Related]

  • 11. Effects of assembly and mutations outside the active site on the functional pH dependence of Escherichia coli aspartate transcarbamylase.
    Yuan X, LiCata VJ, Allewell NM.
    J Biol Chem; 1996 Jan 19; 271(3):1285-94. PubMed ID: 8576114
    [Abstract] [Full Text] [Related]

  • 12. Relaxation spectra of aspartate transcarbamylase. Interaction of the native enzyme with an adenosine 5'-triphosphate analog.
    Wu CW, Hammes GG.
    Biochemistry; 1973 Mar 27; 12(7):1400-8. PubMed ID: 4572360
    [No Abstract] [Full Text] [Related]

  • 13. Homotropic effects in aspartate transcarbamoylase. What happens when the enzyme binds a single molecule of the bisubstrate analog N-phosphonacetyl-L-aspartate?
    Foote J, Schachman HK.
    J Mol Biol; 1985 Nov 05; 186(1):175-84. PubMed ID: 3908690
    [Abstract] [Full Text] [Related]

  • 14. Arginine 54 in the active site of Escherichia coli aspartate transcarbamoylase is critical for catalysis: a site-specific mutagenesis, NMR, and X-ray crystallographic study.
    Stebbins JW, Robertson DE, Roberts MF, Stevens RC, Lipscomb WN, Kantrowitz ER.
    Protein Sci; 1992 Nov 05; 1(11):1435-46. PubMed ID: 1303763
    [Abstract] [Full Text] [Related]

  • 15. Binding of regulatory nucleotides to aspartate transcarbamylase: nuclear magnetic resonance studies of selectively enriched carbon-13 regulatory subunit.
    Moore AC, Browne DT.
    Biochemistry; 1980 Dec 09; 19(25):5768-73. PubMed ID: 7006691
    [Abstract] [Full Text] [Related]

  • 16. Calorimetric analysis of aspartate transcarbamylase from Escherichia coli: binding of cytosine 5'-triphosphate and adenosine 5'-triphosphate.
    Allewell NM, Friedland J, Niekamp K.
    Biochemistry; 1975 Jan 28; 14(2):224-30. PubMed ID: 235271
    [Abstract] [Full Text] [Related]

  • 17. Aspartate transcarbamylase of Escherichia coli. Heterogeneity of binding sites for carbamyl phosphate and fluorinated analogs of carbamyl phosphate.
    Ridge JA, Roberts F, Schaffer MH, Stark GR.
    J Biol Chem; 1976 Oct 10; 251(19):5966-75. PubMed ID: 9409
    [Abstract] [Full Text] [Related]

  • 18. Kinetics of the interaction of N-(phosphonacetyl)-L-aspartate with the catalytic subunit of aspartate transcarbamoylase. A slow conformational change subsequent to binding.
    Cohen RE, Schachman HK.
    J Biol Chem; 1986 Feb 25; 261(6):2623-31. PubMed ID: 3949739
    [Abstract] [Full Text] [Related]

  • 19. An essential residue at the active site of aspartate transcarbamylase.
    Kantrowitz ER, Lipscomb WN.
    J Biol Chem; 1976 May 10; 251(9):2688-95. PubMed ID: 4457
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.