These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


203 related items for PubMed ID: 14961715

  • 41. Electrokinetically based approach for single-nucleotide polymorphism discrimination using a microfluidic device.
    Erickson D, Liu X, Venditti R, Li D, Krull UJ.
    Anal Chem; 2005 Jul 01; 77(13):4000-7. PubMed ID: 15987103
    [Abstract] [Full Text] [Related]

  • 42. Using bioinspired thermally triggered liposomes for high-efficiency mixing and reagent delivery in microfluidic devices.
    Vreeland WN, Locascio LE.
    Anal Chem; 2003 Dec 15; 75(24):6906-11. PubMed ID: 14670052
    [Abstract] [Full Text] [Related]

  • 43. A model for Joule heating-induced dispersion in microchip electrophoresis.
    Wang Y, Lin Q, Mukherjee T.
    Lab Chip; 2004 Dec 15; 4(6):625-31. PubMed ID: 15570376
    [Abstract] [Full Text] [Related]

  • 44. Solution-phase DNA mutation scanning and SNP genotyping by nanoliter melting analysis.
    Sundberg SO, Wittwer CT, Greer J, Pryor RJ, Elenitoba-Johnson O, Gale BK.
    Biomed Microdevices; 2007 Apr 15; 9(2):159-66. PubMed ID: 17165128
    [Abstract] [Full Text] [Related]

  • 45. Bulk-micromachined submicroliter-volume PCR chip with very rapid thermal response and low power consumption.
    Lee DS, Park SH, Yang H, Chung KH, Yoon TH, Kim SJ, Kim K, Kim YT.
    Lab Chip; 2004 Aug 15; 4(4):401-7. PubMed ID: 15269812
    [Abstract] [Full Text] [Related]

  • 46. Detection of single-base mutations using 1-D microfluidic beads array.
    Zhang H, Yang X, Wang K, Tan W, Zhou L, Zuo X, Wen J, Chen Y.
    Electrophoresis; 2007 Dec 15; 28(24):4668-78. PubMed ID: 18072213
    [Abstract] [Full Text] [Related]

  • 47. Simply and reliably integrating micro heaters/sensors in a monolithic PCR-CE microfluidic genetic analysis system.
    Zhong R, Pan X, Jiang L, Dai Z, Qin J, Lin B.
    Electrophoresis; 2009 Apr 15; 30(8):1297-305. PubMed ID: 19319907
    [Abstract] [Full Text] [Related]

  • 48. Microdevice for separation and quantitative fraction collection.
    Spesný M, Foret F.
    Electrophoresis; 2003 Nov 15; 24(21):3745-7. PubMed ID: 14613200
    [Abstract] [Full Text] [Related]

  • 49. Performing microchannel temperature cycling reactions using reciprocating reagent shuttling along a radial temperature gradient.
    Cheng JY, Hsieh CJ, Chuang YC, Hsieh JR.
    Analyst; 2005 Jun 15; 130(6):931-40. PubMed ID: 15912243
    [Abstract] [Full Text] [Related]

  • 50. Rapid fabrication of a poly(dimethylsiloxane) microfluidic capillary gel electrophoresis system utilizing high precision machining.
    Zhao DS, Roy B, McCormick MT, Kuhr WG, Brazill SA.
    Lab Chip; 2003 May 15; 3(2):93-9. PubMed ID: 15100789
    [Abstract] [Full Text] [Related]

  • 51. An integrated microfluidic platform for sensitive and rapid detection of biological toxins.
    Meagher RJ, Hatch AV, Renzi RF, Singh AK.
    Lab Chip; 2008 Dec 15; 8(12):2046-53. PubMed ID: 19023467
    [Abstract] [Full Text] [Related]

  • 52. Chemical and physical processes for integrated temperature control in microfluidic devices.
    Guijt RM, Dodge A, van Dedem GW, de Rooij NF, Verpoorte E.
    Lab Chip; 2003 Feb 15; 3(1):1-4. PubMed ID: 15100796
    [Abstract] [Full Text] [Related]

  • 53. Isotachophoresis preconcentration integrated microfluidic chip for highly sensitive genotyping of the hepatitis B virus.
    Liu D, Shi M, Huang H, Long Z, Zhou X, Qin J, Lin B.
    J Chromatogr B Analyt Technol Biomed Life Sci; 2006 Nov 21; 844(1):32-8. PubMed ID: 16899416
    [Abstract] [Full Text] [Related]

  • 54. Efficient SNP analysis enabled by joint application of the muTGGE and heteroduplex methods.
    Salimullah M, Hamano K, Tachibana M, Inoue K, Nishigaki K.
    Cell Mol Biol Lett; 2005 Nov 21; 10(2):237-45. PubMed ID: 16010289
    [Abstract] [Full Text] [Related]

  • 55. Microfluidic device for the discrimination of single-nucleotide polymorphisms in DNA oligomers using electrochemically actuated alkaline dehybridization.
    Zhang H, Mitrovski SM, Nuzzo RG.
    Anal Chem; 2007 Dec 01; 79(23):9014-21. PubMed ID: 17973402
    [Abstract] [Full Text] [Related]

  • 56. High resolution DNA separations using microchip electrophoresis.
    Sinville R, Soper SA.
    J Sep Sci; 2007 Jul 01; 30(11):1714-28. PubMed ID: 17623451
    [Abstract] [Full Text] [Related]

  • 57. [Application of denaturing gradient gel electrophoresis and temperature gradient gel electrophoresis in microbial molecular ecology].
    Gong ML, Ren NQ, Xing DF.
    Wei Sheng Wu Xue Bao; 2004 Dec 01; 44(6):845-8. PubMed ID: 16110975
    [Abstract] [Full Text] [Related]

  • 58. Mutation screening of the TP53 gene by temporal temperature gradient gel electrophoresis.
    Sørlie T, Johnsen H, Vu P, Lind GE, Lothe R, Børresen-Dale AL.
    Methods Mol Biol; 2005 Dec 01; 291():207-16. PubMed ID: 15502225
    [Abstract] [Full Text] [Related]

  • 59. Sequence-selective DNA detection using multiple laminar streams: a novel microfluidic analysis method.
    Yamashita K, Yamaguchi Y, Miyazaki M, Nakamura H, Shimizu H, Maeda H.
    Lab Chip; 2004 Feb 01; 4(1):1-3. PubMed ID: 15007428
    [Abstract] [Full Text] [Related]

  • 60. Polymer microfluidic chip for online monitoring of microarray hybridizations.
    Noerholm M, Bruus H, Jakobsen MH, Telleman P, Ramsing NB.
    Lab Chip; 2004 Feb 01; 4(1):28-37. PubMed ID: 15007437
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 11.