These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
113 related items for PubMed ID: 14972027
1. The active site and substrate-binding mode of 1-aminocyclopropane-1-carboxylate oxidase determined by site-directed mutagenesis and comparative modelling studies. Seo YS, Yoo A, Jung J, Sung SK, Yang DR, Kim WT, Lee W. Biochem J; 2004 Jun 01; 380(Pt 2):339-46. PubMed ID: 14972027 [Abstract] [Full Text] [Related]
2. Lys296 and Arg299 residues in the C-terminus of MD-ACO1 are essential for a 1-aminocyclopropane-1-carboxylate oxidase enzyme activity. Yoo A, Seo YS, Jung JW, Sung SK, Kim WT, Lee W, Yang DR. J Struct Biol; 2006 Dec 01; 156(3):407-20. PubMed ID: 17046279 [Abstract] [Full Text] [Related]
3. Characterization of the 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase multigene family of Malus domestica Borkh. Binnie JE, McManus MT. Phytochemistry; 2009 Feb 01; 70(3):348-60. PubMed ID: 19223050 [Abstract] [Full Text] [Related]
4. Characterization of the ferrous ion binding sites of apple 1-aminocyclopropane-1-carboxylate oxidase by site-directed mutagenesis. Shaw JF, Chou YS, Chang RC, Yang SF. Biochem Biophys Res Commun; 1996 Aug 23; 225(3):697-700. PubMed ID: 8780676 [Abstract] [Full Text] [Related]
5. Cloning, identification and expression analysis of ACC oxidase gene involved in ethylene production pathway. Jafari Z, Haddad R, Hosseini R, Garoosi G. Mol Biol Rep; 2013 Feb 23; 40(2):1341-50. PubMed ID: 23076530 [Abstract] [Full Text] [Related]
6. Identification and active site analysis of the 1-aminocyclopropane-1-carboxylic acid oxidase catalysing the synthesis of ethylene in Agaricus bisporus. Meng D, Shen L, Yang R, Zhang X, Sheng J. Biochim Biophys Acta; 2014 Jan 23; 1840(1):120-8. PubMed ID: 24016603 [Abstract] [Full Text] [Related]
7. Metal-catalyzed oxidation and mutagenesis studies on the iron(II) binding site of 1-aminocyclopropane-1-carboxylate oxidase. Zhang Z, Barlow JN, Baldwin JE, Schofield CJ. Biochemistry; 1997 Dec 16; 36(50):15999-6007. PubMed ID: 9398335 [Abstract] [Full Text] [Related]
8. 6-Pyruvoyl tetrahydropterin synthase, an enzyme with a novel type of active site involving both zinc binding and an intersubunit catalytic triad motif; site-directed mutagenesis of the proposed active center, characterization of the metal binding site and modelling of substrate binding. Bürgisser DM, Thöny B, Redweik U, Hess D, Heizmann CW, Huber R, Nar H. J Mol Biol; 1995 Oct 20; 253(2):358-69. PubMed ID: 7563095 [Abstract] [Full Text] [Related]
9. Spectroscopic studies of 1-aminocyclopropane-1-carboxylic acid oxidase: molecular mechanism and CO(2) activation in the biosynthesis of ethylene. Zhou J, Rocklin AM, Lipscomb JD, Que L, Solomon EI. J Am Chem Soc; 2002 May 01; 124(17):4602-9. PubMed ID: 11971707 [Abstract] [Full Text] [Related]
10. Probing the active site of cinnamoyl CoA reductase 1 (Ll-CCRH1) from Leucaena leucocephala. Sonawane P, Patel K, Vishwakarma RK, Srivastava S, Singh S, Gaikwad S, Khan BM. Int J Biol Macromol; 2013 Sep 01; 60():33-8. PubMed ID: 23688416 [Abstract] [Full Text] [Related]
11. Involvement of the carboxyl groups of glutathione in the catalytic mechanism of human glutathione transferase A1-1. Widersten M, Björnestedt R, Mannervik B. Biochemistry; 1996 Jun 18; 35(24):7731-42. PubMed ID: 8672473 [Abstract] [Full Text] [Related]
12. Insight into substrate recognition and catalysis by the human neuraminidase 3 (NEU3) through molecular modeling and site-directed mutagenesis. Albohy A, Li MD, Zheng RB, Zou C, Cairo CW. Glycobiology; 2010 Sep 18; 20(9):1127-38. PubMed ID: 20511247 [Abstract] [Full Text] [Related]
13. Mutagenesis of Ala290, which modulates substrate subsite affinity at the catalytic interface of dimeric ThMA. Park SH, Cha H, Kang HK, Shim JH, Woo EJ, Kim JW, Park KH. Biochim Biophys Acta; 2005 Aug 10; 1751(2):170-7. PubMed ID: 15975859 [Abstract] [Full Text] [Related]
15. Steady-state kinetic mechanism of recombinant avocado ACC oxidase: initial velocity and inhibitor studies. Brunhuber NM, Mort JL, Christoffersen RE, Reich NO. Biochemistry; 2000 Sep 05; 39(35):10730-8. PubMed ID: 10978157 [Abstract] [Full Text] [Related]
16. Heterologous expression and site-directed mutagenesis of the 1-aminocyclopropane-1-carboxylate oxidase from kiwi fruit. Lay VJ, Prescott AG, Thomas PG, John P. Eur J Biochem; 1996 Dec 01; 242(2):228-34. PubMed ID: 8973637 [Abstract] [Full Text] [Related]
17. Structure of monkey dimeric dihydrodiol dehydrogenase in complex with isoascorbic acid. Carbone V, Sumii R, Ishikura S, Asada Y, Hara A, El-Kabbani O. Acta Crystallogr D Biol Crystallogr; 2008 May 01; 64(Pt 5):532-42. PubMed ID: 18453689 [Abstract] [Full Text] [Related]
18. Site-directed mutagenesis, kinetic and inhibition studies of aspartate ammonia lyase from Bacillus sp. YM55-1. Puthan Veetil V, Raj H, Quax WJ, Janssen DB, Poelarends GJ. FEBS J; 2009 Jun 01; 276(11):2994-3007. PubMed ID: 19490103 [Abstract] [Full Text] [Related]
19. Structural enzymological studies of 2-enoyl thioester reductase of the human mitochondrial FAS II pathway: new insights into its substrate recognition properties. Chen ZJ, Pudas R, Sharma S, Smart OS, Juffer AH, Hiltunen JK, Wierenga RK, Haapalainen AM. J Mol Biol; 2008 Jun 13; 379(4):830-44. PubMed ID: 18479707 [Abstract] [Full Text] [Related]
20. The active site and substrates binding mode of malonyl-CoA synthetase determined by transferred nuclear Overhauser effect spectroscopy, site-directed mutagenesis, and comparative modeling studies. Jung JW, An JH, Na KB, Kim YS, Lee W. Protein Sci; 2000 Jul 13; 9(7):1294-303. PubMed ID: 10933494 [Abstract] [Full Text] [Related] Page: [Next] [New Search]